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Charting the Interdisciplinary History of the Funding                       
Opportunity in Survey and Statistical Research 

                       
Monroe G. Sirken 

National Center for Health Statistics 
 
The Funding Opportunity in Survey and Statistical Research is an interdisciplinary grants program 
in basic survey and statistical research that is oriented to the needs of Federal statistical agencies.  It 
was officially established in 1998 when the National Science Foundation (NSF), the Interagency 
Committee on Statistical Policy (ICSP)*, and the Federal Committee on Statistical Methodology 
(FCSM)** agreed to jointly fund and administer the program.  However, the Funding Opportunity=s 
heritage goes back much further than when it was created five years ago. 
  
The Funding Opportunity is rooted in the CASM Movement.  As a matter of fact, it would never 
have been established in 1998 or since, had it not been for the efforts underway in 1998 to obtain the 
funding needed to sustain the research agenda of the CASM Movement.  The CASM Movement, a 
long-term effort to foster interdisciplinary research on the cognitive aspects of survey methodology, 
emerged in the early 1980's as a direct consequence of the change from the behavioral to the 
cognitive paradigm that occurred in psychology the early 1970's.  Thus, charting the 
interdisciplinary history of the Funding Opportunity is equivalent to recounting the history of a 
sustained effort to foster interdisciplinary survey research in the United States that began more than 
30 years ago, and is alive and active today due to the recent extension of the 1998 NSF/FCSM-ICSP 
agreement to fund and administer the Funding Opportunity in Survey and Statistical Research 
beyond the year 2002.      
 

Historical Overview 
 
The history of the Funding Opportunity in Survey and Statistical Research can be divided into the 
three periods shown below:  

Period (1)  The Prologue - The decade between the emergence of the cognitive paradigm 
in the early 1970's and convening the CASM I Seminar 1983; 
Period (2)  The CASM Movement - The 14-year period between the CASM I Seminar in 
1983 and CASM II Seminar in 1997; 
Period (3)  The Funding Opportunity Program - The 5-year period since the Funding 
Opportunity in Survey and Statistical Research was established in 1998.  

_____________________________________________________________________________ 
* The ICSP is a committee of the directors of 13 largest Federal statistical agencies and is 
chaired by the Chief Statistician of the Office of Management and Budget. 
* * The FCSM is an interagency committee dedicated to improving the quality of Federal 
statistics and includes invited Federal agency staff with relevant experience and expertise. The 
reader is referred to Aborn (1999) for more information about period (1), to Tanur (1999) and 
Jabine (1999) for more information about Period (2), and to Sirken (2001) and Kirkendall (2001) 
for more information about Period (3). 
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The flowchart on the following page lists eight milestones in the history of the Funding Opportunity 
by the period of occurrence.  Milestones occurring during periods 1, 2, and 3 respectively are 
discussed below.  In view of the vital importance of interdisciplinary research to the advancement of 
official statistics, concluding section F proposes that studies should be undertaken to explore 
improved ways of meeting the challenges of fostering interdisciplinary research in our decentralized 
Federal Statistical System.       
 

Milestones Preceding the CASM Movement 
 
Milestone 1.  Emergence of the cognitive paradigm.  The shift in paradigms, from the behavioral to 
the cognitive, implied that the two-stage stimulus response process postulated by the behavioral 
paradigm is intervened by a cognitive stage in which subjects perform a range of mental tasks.  
Compared to the behavioral paradigm, the cognitive paradigm focuses on how the mind works rather 
than who the subjects are and what the conditions are when the subjects perform their tasks.  The 
cognitive paradigm rapidly diffused from psychology and influenced the research orientations of 
other disciplines, notably education and computer science.  When the cognitive paradigm reached 
the survey research community toward the end of the 1970's, it provided survey researchers and 
cognitive psychologist with opportunities to simultaneously address chronic measurement problems 
in survey response and non response, and to test in the real world of survey research, the cognitive 
theories that had been largely developed and tested in laboratory settings.  
 
Consider, for example, the difference between the behavioral and cognitive theories of truthfully 
answering sensitive questions in surveys.  Based on behavioral theory, the likelihood of truthful 
response depends on the survey takers= assessments of the sensitivity of the survey questions and the 
extent of privacy and anonymity provided by the data collection modes.  Based on cognitive theory, 
the independent variables are the respondents= perceptions of the risks and losses of truthful 
disclosure.  From the cognitive theory perspective, the likelihood of truthful survey response is an 
example of Ahuman decision making under conditions of uncertainty= - a scientific field of enquiry 
that has long interested cognitive psychologists and for which Daniel Kahneman, a cognitive 
scientist, recently shared a Nobel prize in economics.  Conducting interdisciplinary research on the 
cognitive aspects of truthful response to sensitive survey questions potentially benefits survey 
researchers and cognitive psychologists. It provides survey researchers with innovative theories of 
survey response and non response that are in the mainstream of mathematical statistics and modern 
science, and it provides cognitive psychologists with opportunities to test cognitive theories of 
human decision making under conditions of uncertainty in the real world venue of survey taking. 
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Milestone 2.  The workshop on applying cognitive psychology to recall problems of the National 
Crime Survey.  The initial meetings of cognitive psychologists and survey researchers were 
independently convened in the UK in 1978 (Moss and Goldstein, 1979) and in the USA in 1980 
(Biderman, Cantor, Lynch, and Martin, 1986) to discuss the cognitive aspects of retrospective 
reporting in single time population surveys.  The U.S. meeting, a 2-day workshop convened by the 
Bureau of Social Science Research (BSSR) with support of the Bureau of Justice Statistics and the 
Bureau of the Census, brought together a small number of cognitive psychologists and survey 
researchers to discuss cognitive methods to improve recall of victimization in the National Crime 
Survey.  (The Crime Survey asks respondents to retrospectively report incidents in which they were 
crime victims.)  Though the workshop was not organized with the intent of fostering an 
interdisciplinary survey research movement, it made lasting impressions on those in attendance and 
several of them subsequently became key players in the CASM Movement. 
 
Milestone 3.  The Twelfth Annual Report of the National Science Board.  In its annual report to the 
President in 1981, the National Science Board (NSB), the governing body of the NSF, appraised six 
areas in which basic research has significantly impacted society, and luckily as it turned out Asurvey 
research and opinion polls@ was one of these areas.   After describing the growth of survey research 
and polling in our modern society, the NSB report stresses the need for more research and 
refinement in measuring the behavioral and social dimensions of survey taking so that surveys can 
continue to benefit society in the future.  The twelfth NSB report was very influential in setting NSF 
priorities during the 1980's   Quoting Murray Aborn (1999), then head of NSF=s Measurement 
Methods and Data Improvement (MMDI) Program, A... it is no exaggeration to say that the [NSB] 
report was instrumental in obtaining the budgetary increments that made it possible [for the MMDI 
program] to support the CASM I [Seminar], and subsequent research projects, and the cognitive 
research laboratory at the National Center for Health Statistics.”  Dr. Aborn was a consultant to the 
NSB in preparing the 12th annual report, and had been a participant at the BSSR Workshop.   
 

Milestones of the CASM Movement 
  
Milestone 4.  The CASM I Seminar.  The Advanced Research Seminar on the Cognitive Aspects of 
Survey Methodology, more familiarly known as the CASM I Seminar, convened on June 15, 1983.   
It was a landmark event that initiated the CASM Movement to foster interdisciplinary research on 
the cognitive aspects of survey methodology (Jabine et al, 1984). The CASM Seminar and its 
follow-up meeting in January 1984 were organized and convened by the Committee on National 
Statistics and funded by the MMDI program.  Twenty-two invited cognitive psychologists and 
survey researchers from academia and government participated in the seminar and its follow-up 
meeting.  The seminar sought to foster dialogues among the participants, and to develop ideas for 
collaborative research project proposals.  Its success in realizing both objectives can be attributed to 
careful planning by CNSTAT staff, and to the announcement by the MMDI program before the 
seminar that it would be interested in funding the most promising seminar research project 
proposals.  Several ideas for interdisciplinary research projects evolved at the CASM I Seminar, 
were discussed at the follow-up January meeting, and later were submitted by seminar participants to 
and were funded by the MMDI program    
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Milestone 5.  The CASM II Seminar.  The CASM II Seminar convened in June 1997 (Sirken et al, 
1999b).  The seminar was jointly funded by the NSF and National Center for Health Statistics 
(NCHS), organized by a Planning Committee of survey researchers from government and 
universities, and administered by NCHS staff.  Though it had been prudent at the CASM I Seminar 
to narrowly focus CASM research on the cognitive aspects of questionnaire design, and to limit 
collaborations largely to cognitive psychologists, much had been accomplished since then and the 
CASM II Seminar sought to expand the scope of CASM research to address issues at all stages of 
the survey measurement process, and to expand collaborations to many scientific disciplines.  The 6-
day seminar had 58 invited participants, and 16 commissioned papers were presented and discussed 
(Sirken, et al., 1999a).  
 
The CASM I Seminar served as the model for organizing of the CASM II Seminar.  The CASM I 
and II Seminars were virtually equivalent in all major respects, except one.  Unlike the CASM I 
Seminar, the CASM II Seminar lacked institutional funding to support the research projects 
generated at the CASM II Seminar and to sustain the CASM Movement thereafter.  The sheltered 
CASM funding and administrative support previously provided by the MMDI program had expired 
with Murray Aborn=s retirement in about 1990, and ongoing efforts to obtain commitments from the 
NSF and the Social Science Research Council to support CASM II research projects and to sustain 
the CASM Movement were in limbo when the CASM II Seminar convened.  A potential break-
through occurred towards the end of the CASM II Seminar when NSF=s Methodology, 
Measurement, and Statistics (MMS) Program offered to administer a grants program in basic survey 
research and provide $300,000 in annual sheltered funding during a 3-year period, but the offer was 
contingent on matching funds being provided by a consortium of Federal Agencies.      
 

Milestones of the Funding Opportunity 
 
Milestone 6.  Establishment of the FCSM Research Subcommittee.  Well before the MMS program 
offer at the CASM II Seminar to cosponsor a survey research grants program, efforts had been 
underway to recruit and organize a consortium of Federal statistical agencies to support an 
interdisciplinary grants program in CASM research.  In early 1997, when the matter was first 
brought to the attention of the Federal Committee on Statistical Methodology (FCSM), an FCSM 
Research Grants Subcommittee was appointed to draft a CASM II Research Consortium Proposal 
requesting the ICSP for concept approval and funding support for the consortium.  The FCSM 
Subcommittee estimated that, at a minimum, about $600,000 or an average of almost $50,000 per 
ICSP agency (if all 13 ICSP agencies participated) would be required annually to maintain the 
CASM research grants program.  Informal discussions with some ICSP agency heads made it clear 
that the proposed annual contribution of almost $50,000 per agency was unrealistic.  However, the 
MMS offer to co-fund a survey research grants program would lower the average annual ICSP 
agency contribution from $50,000 to $25,000, and that reduction appeared to make the consortium 
proposal feasible. 
 
Milestone 7.  Establishment of the Funding Opportunity in Survey Research.  In June 1998, the 
FCSM Research Subcommittee submitted a research grants program proposal to the ICSP with the 
following provisions: (1) the consortium of ICSP agencies match the MMS offer and contribute 
$300,000 annually for a period of three years to support meritorious research proposals of potential 
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benefit to Federal statistical agencies;  (2) ICSP agencies and NSF programs have opportunities to 
add-on funds for research proposals of particular interest to their respective programs; (3) project 
proposals responding to the MMS announcements undergo a two-tier project review and selection 
process, first by a NSF panel for scientific merit and then by a government panel for potential utility 
to Federal statistical agencies with final selections made by the MMS program in close collaboration 
with the FCSM Research Subcommittee; and (4) seminars, such as this one, that offer opportunities 
for direct discourse between the principal investigators of funded projects and statistical agency 
staffs are convened periodically in the Washington DC vicinity.  
 
Twelve of the 13 ICSP agencies pledged to match the NSF contributions, by each contributing 
$25,000 annually for 3 years contingent on a successful demonstration during the first funding year. 
 In September 1998, the ICSP, MMS and FCSM reached final agreement to administer and fund the 
Funding Opportunity during the 1999 demonstration year.  In July 1999, the MMS/FCSM-ICSP 
agreement was extended for 2 additional funding years 2001 and 2002, and the name of the program 
was changed to The Funding Opportunity in Survey and Statistical Research.           
 
Milestone 8.  Renewal of the Funding Opportunity.   Prior to the expiration in 2002 of the original 
NSF/FCSM-ICSP agreement, the MMS program indicated that if the ICSP agencies would continue 
to contribute $300,000 annually, MMS would be willing to continue to administer the Funding 
Opportunity, but as an integral part of the MMS grants program rather than a separate program.  
Also instead of the MMS program pledging $300,000 annually in sheltered funding for Funding 
Opportunity projects as it had in the past, the Funding Opportunity project proposals would compete 
on an equal basis with other project proposals submitted for MMS funding.  Thus, in effect the size 
of the MMS contributions to the Funding Opportunity in the future would vary from year to year, 
and could be more or less than the $300,000 per annum contributed by the consortium of ICSP 
agencies.  
 
During the latter part of 2002, the FCSM Research Committee incorporated the MMS renewal offer 
into a renewal proposal that was submitted to the ICSP with the recommendation that the ICSP 
agencies renew their pledges for 3 more years.  The ICSP agencies agreed to extend their pledges 
and contribute a total of $300,000 annually to the Funding Opportunity for three more years, but 
instead of each ICSP agency contributing $25,000 annually, the sizes of the agency=s annual 
contributions will vary somewhat depending on relative size of the agency=s appropriated budget.  
The renewed NSF/FCSM-ICSP agreement became effective at the beginning of year 2003, using 
essentially the same NSF/FCSM administrative arrangements that had evolved and worked so well 
during the period of the first agreement.   
 

Concluding Remarks 
 
By its very nature survey research is an interdisciplinary discipline, and its advancement depends on 
knowledge and technology transfers that come about as a result of interdisciplinary survey research 
(Sirken and Herrmann, 1996).  There is growing appreciation of the need to foster interdisciplinary 
survey research, but fostering interdisciplinary survey research is not an easy thing to do.  Initiating 
interdisciplinary survey research requires bridging the communication and cultural gaps between 
survey researchers and researchers in other disciplines, and sustaining interdisciplinary research 
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requires obtaining institutional commitments to provide the administrative structures and funding 
support (Olkin and Sacks, 1988).  Fostering interdisciplinary survey research oriented to the needs of 
Federal statistical agencies is a particularly hard thing to do in our decentralized statistical system 
comprising 68 independent statistical agencies in which short term research linked to each agency=s 
particular missions is the rule. Despite these difficulties or perhaps due to these difficulties, several 
independent efforts are currently underway to foster interdisciplinary research oriented to the needs 
of Federal statistical agencies.  Other ongoing fostering efforts, in addition to the Funding 
Opportunity in Survey and Statistical Research, are the ASA/NSF Fellowship program and NSF=s 
Digital Government Program.  
 
In view of the vital importance of interdisciplinary research in the advancement of official statistics, 
it seems to me that initiating a research project on the process of fostering interdisciplinary in 
official statistics would be well worth the effort.  As a step in that direction, I propose that a seminar 
be convened to review and compare the objectives and fostering strategies of the Funding 
Opportunity, the ASA/NSF Fellowship program, and NSF=s Digital Government Program, and to 
discuss the policy implications of fostering interdisciplinary research efforts in the Federal statistical 
system.  
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Bayesian Methodology for Disclosure Limitation and Statistical Analysis 

of Large Government Surveys 
 

 
Discussant: Ramesh Dandekar, Energy Information Administration, U. S. DOE 
 
Researchers: Roderick J. Little and Trivellore Raghunathan, University of Michigan 
 

Background 
 
Synthetic micro data has been used extensively to study the behavior of complex computer 
models for a long time. In recent years, there has been an increased realization that synthetic 
micro data could also be used for a dissemination of statistical information in place of real data 
containing sensitive records collected by federal agencies. Because of relatively low disclosure 
potential and the ability to recreate most of the statistical properties of the original data, synthetic 
micro data offers some advantage over other methods of micro data protection.  It has also been 
known for a while that synthetic data offers an economical choice to the on-site data research 
centers operated by federal statistical agencies in dissemination of public use information.  
Ideally, potential researchers could use synthetic data from their own work site for initial 
hypothesis testing/model development, without concern for data confidentiality. The researchers 
will need to use the data center facility only to run their final refined model/setup on the original 
data. Such a strategy has the potential to reduce the on-site operating cost for data centers. 
 
The characteristics of micro data disseminated by federal statistical agencies vary considerably.  
As a result, it is unlikely that one synthetic micro data generation method will work well on all 
different micro data types. This necessitates that statistical agencies conduct a broad-based 
research on multiple fronts to generate synthetic micro data. The two separate papers in this 
session offer unique application areas.  
 
The paper by Raghunathan, Reiter and Rubin, “Multiple Imputation for Statistical Disclosure 
Limitation”, demonstrates the procedure to generate synthetic micro data by using multiple 
imputation framework proposed by Rubin in 1993. The proposed procedure uses a parametric and 
non parametric approach to generate synthetic data.   The inference based on this technique 
requires that some adjustments be made to point and variance estimates prior to their use.  The 
paper demonstrates that the inferences derived from the synthetic data are similar to those derived 
using actual data. 
 
The Paper by Little and Liu, “Selective Multiple Imputation of Keys for Statistical Disclosure 
Control in Micro Data”, on the other hand, generates synthetic micro data by selective multiple 
imputation of categorical key variables and continuous non-key variables. The method offers a 
potential balance between data quality and statistical disclosure control by mixing select non-
sensitive cases with sensitive cases. 
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Specific Comments 

 
Both methods for synthetic micro data generation offer viable options by using a Bayesian 
framework. There are many potential applications for these two methods. However, the 
application potential for these two methods could be increased considerably by extending the 
scope of current research work to do the following: 
 

1) Develop alternate methods/procedures to reduce current dependence on the model based 
imputation procedure.  Developing the most appropriate global model to capture multi-
variate statistical characteristics of any given data is always a time consuming process. It is 
also possible that the synthetic data end user might want to use the data to develop his/her 
own statistical model to represent original data. In such a situation, it might not be a good 
strategy to generate model-based synthetic data.  
 
2) Derive new methods/procedures that will keep an optimum balance between the 
synthetic micro data quality and related tabular data quality along with adequate disclosure 
protection for both. It is a common practice to perform a preliminary statistical analysis of 
raw micro data by exploring associated tabular structure of the micro data. Conclusions 
derived from the tabular data analysis are commonly used in analytical studies and policy 
papers. Such a practice necessitates adequate precautions to retain statistical characteristics 
associated with original tabular structure to the extent possible.  
 
3) Look at the feasibility of using the Latin Hypercube Sampling (LHS) method in 
combination with a restricted pairing algorithm by Iman and Conover to induce a desired 
rank correlation matrix on synthetic micro data within a framework supported by a 
Bayesian method. The LHS method is model independent and has been used successfully 
to generate synthetic micro data since late seventies. By using the empirical cumulative 
distribution function of the real data, the LHS method provides non-parametric approach 
to generate synthetic micro data. For many applications the LHS-based synthetic data 
generation method could offer the most practical approach that balances data quality and 
minimal resources required to generate synthetic micro data. 
 
4) Look at the feasibility of performing backward calibration of micro data based on the 
outcome from the Controlled Tabular Adjustments (CTA) to protect related tabular data 
(Dandekar/Cox 2002, Dandekar 2003).  Such a strategy allows one to one correspondence 
between synthetic micro data and synthetic tabular data. 
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Discussion of 
 

Multiple Imputation for Statistical Disclosure Limitation  
by T. E. Raghunathan, J. P. Reiter, and D. B. Rubin 

 
Selective Multiple Imputation of Keys for Statistical Disclosure Control 

in Microdata 
by R. J. A. Little and F. Liu 

 
William E Winkler 
U.S. Census Bureau 

 
 
1.  Introduction 
Statistical agencies that provide public-use microdata must contend with the conflicting goals of 
producing data that satisfy one or more analytic needs of a group of users and preserving the 
confidentiality of data records associated with entities such as individuals or companies.  It is the 
view of this discussant (e.g., Winkler 1997) that analytic needs should be met by building models of 
the public microdata.  The models should be described in terms of user-specified requirements for 
analyses.  The documentation should describe the limitations the microdata for the specified analytic 
purposes and other purposes to which the microdata might be put.  If the analytic needs of the 
microdata have been justified, then the confidentiality of the microdata should have be described. 
 
The outline of this discussion is as follows.  In second section, I provide background on a number of 
existing methods and their analytic limitations.  In the third section, I discuss the general framework 
of Raghunathan et al. (2003) for providing synthetic microdata under models that meet analytic 
needs and the framework of Little and Liu (2003) for providing partially synthetic data that also 
meets analytic needs and does not require the amount of modeling as the more general framework.  
The final section consists of concluding remarks.  
 
2.  Background 
A variety of methods have been developed and used for masking a data file.  The methods have the 
intent of altering the data in a manner that allows some analyses to be done that correspond to what 
could be done on the original, confidential microdata and of making re-identification more difficult.  
After masking, the resultant microdata are disseminated to users who presumably wish to perform 
analyses that could not be performed by using published tables alone.   
 
These masking methods include swapping (Dalenius and Reiss 1982), rank swapping (Moore 1996), 
micro-aggregation (e.g., Domingo et al. 2002), k-similarity (Samarati and Sweeney 1998) that 
includes global recoding and local suppression, variants of additive noise (Kim 1986, 1990, Fuller 
1993), and synthetic microdata (Rubin 1993, Fienberg 1997).  All of the original and succeeding 
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authors who have considered swapping, rank swapping, and micro-aggregation have been able to 
point out serious difficulties with providing for even basic analytic needs.  If the swapping, rank 
swapping, and micro-aggregation are over relatively small and homogenous groups, then simple 
analytic needs may not be seriously compromised but re-identification can be straightforward 
(Winkler 2002).  The method of Winkler (2002) for micro-aggregation it can be easily extended to 
swapping and rank swapping.  Although k-similarity is guaranteed to provide confidentiality because 
at least k records with have the same identifying information, it has, so far, only been rigorously 
shown to provide analytic needs in very simple situations (Iyengar 2002).  Sampling, as a simple 
alternative, neither assures that simple analytic needs are met nor assures that all records cannot be 
re-identified.  Typically, sampling is not designed to satisfy a number of analytic constraints 
(particularly on a set of subdomains).  With typical sampling designs, records in the sample can be 
population uniques and relatively straightforward to re-identify. 
 
The only two methods that place primary emphasis on analytic properties of the masked microdata 
are the additive noise ideas of Kim (1986, 1990) and synthetic data methods (Rubin 1993, Fienberg 
1997).  A valid criticism of additive noise has been that it is only generally suitable for public-use 
microdata that is used in regression-type analyses.  Another criticism has been that special software 
is needed for analyzing additive-noise microdata.  High quality software (Yancey et al. 2002) is now 
available for correct analysis.  The software even supports analyses on arbitrary subdomains 
according to the original ideas introduced by Kim (1990).  At present, producing synthetic data 
according to models that consider user-specified analytic needs are the most promising approach.  
Criticisms of the approach deal with the inability of groups, particularly in statistical agencies, to 
develop models of their data and create software.  A simplistic method for automatically creating 
models of the data using Bayesian networks was introduced by Thibaudeau and Winkler (2002).  
The standard methods for creating models for multiple imputation should still produce much higher 
quality analytic properties.  
 
3.  The Papers 
This section summarizes and comments on the papers of Raghunathan, Reiter and Rubin (2003) and 
Little and Liu (2003).  
 
3.1.  Raghunathan, Reiter, and Rubin 
The paper of Raghunathan et al. (2003) provides an important theoretical foundation for producing 
synthetic microdata satisfying analytic constraints.  Three examples give insight and provide further 
practical advice.  Other examples have been given by Reiter (2002, 2003).  Further, software 
(Raghunathan et al. 1998) can facilitate producing microdata in a manner that is consistent with 
ideas introduced by Kennickell (1997) and Abowd and Woodcock (2002). 
 
Fienberg (1997) raised the following issue.  If sufficient analytic constraints are placed on the 
synthetic microdata, then some of the synthetic microdata records may be very close to actual 
population records.  This has the possibility of allowing re-identification.  In the Raghunathan et al. 
(2003) framework, arbitrary statistics qM and TM representing multiple imputation means and 
variances are considered.  If a sufficiently large number of copies of the population Pi, i ≤M, are 
released and the models are sufficiently detailed to allow reasonable analyses on a moderate number 
of statistics q, when will it be possible that a moderate number of the original, confidential microdata 
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records may be approximated with reasonable accuracy?  Raghunathan et al. note that the 
approximate Bayesian bootstrap, while not as sensitive to model assumptions, can potentially lead to 
more re-identification.  The parametric modeling, on the other hand, is more subject to model 
specification error as has been noted by Reiter (2002) in addition to Raghunathan et al.. 
 
3.2. Little and Liu 
The paper of Little and Liu (2003) provides a practical framework for producing partially synthetic 
data that should be more straightforward to implement than purely synthetic data.  Their paper also 
provides a useful and practical guide about how to do re-identification in straightforward situations.   
 
I summarize their method.  They assume that the original data consist of both continuous and 
discrete variables.  They assume that outside individuals have a database that contains the discrete 
variables.  Their method “masks” the discrete variables in a manner that does not change the 
continuous variables.  They mask by choosing neighborhoods of variables using continuous 
variables only.  Discrete data among “at risk” records or merely in a sample of records within the 
neighborhoods can be swapped.  There is no requirement that the neighborhoods are disjoint.  Their 
initial empirical results are promising.  They demonstrate that the information loss due to the 
masking procedure is modest but still non-trivial.  Using discrete data only, they provide re-
identification risk metrics that are conservative and realistic.   
 
If both continuous and discrete data are used for re-identification, is it possible to re-identify?  Little 
and Liu might compare their information-loss/re-identification-risk framework to the R-U 
confidentiality map framework introduced by Duncan et al. 2001 (see also Trottini and Fienberg, 
2002). 
 
4.  Concluding Remarks 
The concluding remarks are two recommendations.  The first recommendation is that all releases of 
public-use microdata should discuss and justify the analytic usefulness of the data.  This should 
include what analyses on the original, confidential microdata can be reproduced on the masked, 
public-use microdata.  The second recommendation is that the microdata confidentiality community 
should continue serious investigation of synthetic microdata, particularly with the information-
loss/disclosure-risk framework given by both sets of authors.  An alternative method for producing 
synthetic microdata using Latin Hypecubes is given by Dandekar et al. (2002). 
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Introduction 

 
The rapid acceptance of the Web as a vehicle for survey data collection raises important questions 
for survey designers.  Web surveys are the latest example of computerized self-administration of 
survey questions, and we suspect they may ultimately turn out to be the most popular.  Aside from 
the gains from computerization and self-administration, Web data collection eliminates interviewers 
entirely, sharply reducing the cost of data collection. Furthermore, Web surveys can deliver rich 
visual content that is impossible or prohibitively expensive to incorporate in other modes.  Not 
surprisingly, the growth in Web surveys has been dramatic.  Despite serious concerns about 
coverage and nonresponse in Web surveys (Couper, 2001), the commercial research sector has 
rapidly embraced the Internet for faster and cheaper data collection, and almost daily there are 
reports of new surveys being done over the Web. 
 
A key characteristic of Web surveys is their reliance on visual presentation of the questions.  Of 
course, sound can be added to Web questionnaires, but so far Web surveys have remained a visual 
medium.  Visual presentation is not unique to Web data collection, but is shared to varying degrees 
with most other methods of self-administration, including mail surveys. 
   
Still, the implications of visual presentation are not especially well understood, even for the older 
methods; the literature on the design of mail or paper-based self-administered questionnaires is not 
large. Although several good texts offer practical guidelines for the design of paper self-
administered questionnaires (e.g., Dillman, 1978; Mangione, 1995), there has been relatively little 
empirical work or theoretical analysis of the issues involved. The forms design literature is sparse in 
general (see, e.g., Burgess, 1984; Waller, 1984; Wright and Barnard, 1975). The one notable 
exception has been the work of Redline and Dillman, who have applied principles rooted in visual 
perception theory to the design of self-administered forms (Dillman, Redline, and Carley-Baxter, 
1999; Jenkins and Dillman, 1995; Redline and Dillman, 2002). The focus of this work has been on 
designing forms so that respondents are willing and able to complete them. But the design of paper 
forms and computer screens may affect not only whether respondents answer the questions but also 
which answers they give (e.g., Sanchez, 1992; Smith, 1995). The study of forms design is in its 
infancy, and the impact of forms design on measurement error has been almost entirely neglected. 
 
The studies we present here support a few general conclusions about the impact of visual 
information on responses to questions in Web surveys: 

 
� Respondents notice images in Web surveys and the content of these images can affect 

the answers they give; 
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� Respondents also take in such visual cues as the spacing and relative position of the 

response options and these cues can alter their interpretation of survey questions; 
 
� Respondents are sensitive to information that is immediately visible and may ignore 

information that is equally critical but not equally available.  
 

Taken together, our results suggest that, whether we want them to or not, respondents attend to the 
visual design of Web questionnaires as well as to the verbal content of the questions. 
 

Images as Context 
 
One line of our work has focused on the use of photographic images to supplement question text.   
As we have argued in an earlier paper (Couper, Tourangeau, and Kenyon, in press), visual and 
verbal elements may be essential to complete the task of understanding and responding to the 
questions or these elements may be inessential stylistic embellishments that create an overall “look-
and-feel” for the questionnaire.  This task-style continuum suggests several different ways pictures 
can be used in Web surveys:   

 
1. Questions in which images play an essential role (such as questions on recall of an 

advertisement, brand recognition questions, questions on magazine readership, etc.); 
 
2. Questions in which images supplement the question text, whether the images are 

intended as motivational embellishments or as illustrations of the meaning of the 
question; 

 
3. Questions in which the images are incidental (providing branding, an attractive 

background, etc.). 
 
All three combinations of text and image appear to be quite widespread in Web surveys.  The 
arguments for questions using the first type of text-image combination are quite compelling, and 
questions in the third category — in which the images are incidental to the task — may also make 
sense in the highly competitive world of Web surveys, where branding is an important goal of many 
purveyors of Web surveys and services.  Questions in which images are intended to play a 
supplementary role are potentially the most problematic, because it may not be clear to respondents 
whether the images are intended as task elements or style elements. 
   
Whether the survey designers intend it or not, images can serve as powerful contextual cues that 
alter what material comes to mind as respondents formulate their answers; they can affect how 
respondents construe the targets of their judgments or the standards they apply in making those 
judgments.  Let us briefly summarize the results of three studies that illustrate these processes. 
   
Images, target categories, and frequency judgments.  Our first experiments on the impact of 
images were done by Knowledge Networks, which embedded them in a survey administered to a 
sample of U.S. adults from the Knowledge Networks panel.  The panel is made up of approximately 



25   

100,000 panel members from almost 50,000 households in the United States, initially recruited from 
a list-assisted RDD sample.  Each panel member receives the same WebTV unit and software, which 
help assure that the survey looks the same to every panel member.  Some 56% of contacted 
households agree to join the panel but only 80% of those actually install the WebTV unit and only 
83% of those complete the initial questionnaire which gathers basic demographic data on panel 
members.  These are average estimates, as panel recruitment is an ongoing effort.  Dennis (2001) 
provides more details on the design and implementation of the panel.  About 3,000 members of the 
panel were asked to complete our survey, and 2,385 of them did.  Taking into account the losses at 
earlier stages of recruitment and data collection, the cumulative response rate for our survey was 
30%. 
 
The survey, which concerned travel, leisure, and shopping activities, included six parallel 
experiments summarized in Table 1 below.  All six followed the same logic.  For each topic, we 
developed four versions of the questions:  

 
1. a version that did not include any picture (the no picture condition);  
 
2. a version featuring an image of a salient, but low frequency instance of the behavior in 

question (the low frequency condition);  
 
3. a version featuring an image of a salient high frequency instance (the high frequency 

condition);  and  
 
4. a version that displayed both pictures (the both pictures condition).   
 

Our hypothesis was that presenting the picture of the high frequency instance would enhance the 
retrieval of similar instances and increase the total number of instances reported.  By contrast, the 
picture of the low frequency instance would trigger the recall of relatively infrequent incidents 
similar to the one in the picture.  For example, we asked respondents about their shopping trips in 
the past month and expected that showing them a picture of a grocery store would increase the 
overall number of shopping trips they reported on average compared to the picture of a department 
store, since trips to the grocery (cued by the one picture) are likely to be more frequent than trips to a 
department store (cued by the other).1    

                                                 
1For two of the topics in our study, we carried out a follow-up study to confirm that the pictures did 

in fact portray highly salient instances of the category.  The follow-up questionnaire included questions 
asking the respondents how often they went shopping and how often they took overnight trips.  Just after the 
frequency question on shopping, respondents were asked “which of the following types of store did you 
consider in answering the previous question,” with grocery stores and department stores among the 
possibilities listed.  (Respondents were asked to pick all of the types of store they had considered.)  Similarly, 
we asked respondents “which of the following types of trips” they had in mind in answering the prior question 
on their travel frequency.  Grocery stores were the most commonly mentioned type of store, with 93.2% of 
the respondents indicating they had considered them in responding to the item about how often they went 
shopping.  Department stores were the next most popular choice (64.9%; another 5.9% mentioned clothing 
stores but not department stores).  For the travel item, the most popular choices were family vacations by car 
(76.9%), family visits by car (65.6%), and vacations by plane (50.2%).  Business trips by plane were 
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Table 1.  Images Displayed (and Sample Sizes) in Study 1, by Condition and Topic 

Picture Descriptions  
Question topics 

No Picture Low Frequency 
Instance 

High Frequency 
Instance 

Both Pictures 

Overnight trips in 
last year 

 
 

(579) 

Businessman at 
airport 
(620) 

Family station wagon 
(593) 

 
 

(593) 
Sporting events 
attended in last 
year 

 
 

(582) 

Large baseball 
stadium 
(621) 

Little league ball 
game 
(646) 

 
 

(536) 
Times went out to 
eat in past month 

 
 

(592) 

Intimate restaurant 
 

(593) 

Eating fast food in a 
car 

(585) 

 
 

(615) 
Live music events 
attended in the last 
year 

 
 

(608) 

Large outdoor rock 
concert 
(608) 

Piano and singer at 
club 
(572) 

 
 

(597) 
Listening to 
recorded music in 
the past week 

 
 

(591) 

Listening to the hi-fi 
(588) 

Listening to the car 
radio 
(598) 

 
 

(608) 
Shopping trips in 
the past month 

 
 

(616) 

Department store 
(clothing) 

(594) 

Grocery store 
 

(548) 

 
 

(627) 
 

 

We compared the four means for each topic using one-way ANOVAs.  For all six topics, the overall 
F-tests were significant.  In addition, for four of the six topics, the means for the high and low 
frequency conditions differed significantly from each other (at p < .01 or less); the two exceptions 
involved live music and recorded music.  In all four cases, the difference was in the expected 
direction, with the pictures showing the high frequency instances of the behaviors prompting higher 
reporting on the average than the pictures showing the low frequency instances.  We interpret this as 
the same sort of accessibility-based context effects that are often found in attitude surveys (see 
Chapter 7 in Tourangeau, Rips, and Rasinski, 2000) — the images affect the number and type of 
instances respondents retrieve in formulating their answers (“priming” those memories); the number 
and type of instances retrieved in turn affect the judged frequency of the behavior. 
  
Responses to an open-ended debriefing question at the end of our second survey suggested that the 
pictures may not only have primed specific memories, but also affected how respondents construed 
the category of interest.  This was most noticeable for the question on shopping frequency, which 

                                                                                                                                                             
mentioned by 24.9% of the respondents.  In the absence of any pictures, then, respondents were likely to 
consider these instances in assessing the frequency of shopping and traveling — they are highly salient 
examples.  Still, for some respondents, the pictures were likely to remind them of incidents they might 
otherwise have forgotten or overlooked. 
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was followed by a question on the proportion of shopping trips that were for food.  Several 
respondents commented on the impact of the images, for example: 

 
“What kind of shopping you were looking for was not defined because my number of 
times would be different depending on what type. I took it as how many times for 
leisure.” [No picture] 

 
“Thought shopping meant clothes from picture.  If you include food shopping — went 
about 10 times” [Department store picture] 
 
“I shop for groceries almost every week.  Does that count? The pictures are nice, but add 
to the time it takes to answer a survey.” [Department store picture] 
 
“The pictures helped remind me that a little league game is just as much a sporting event 
as a trip to Fenway.  The pics were a help.” [Both sporting event pictures] 

 
For some respondents, the pictures clarified the meaning of the questions, broadening their definition 
of the target category.  For others, the pictures may have reinforced a relatively narrow interpretation 
of the question’s meaning. 
 
Images and rated health.  In our initial studies, then, respondents exhibited what are sometimes 
called assimilation effects in the context effects literature. When they saw images of high frequency 
events, they reported higher frequencies; when they saw images of low frequency events, they 
reported lower frequencies.  Verbal context (in the form of prior items) can sometimes have the 
opposite effect on answers to subsequent questions.  When the prior questions suggest an extreme 
standard of comparison that respondents apply in judging later items, the target judgments are 
pushed in the direction opposite of the standard.  For example, respondents may report liking a 
politician less when they rate an extremely popular politician first (Schwarz and Bless, 1992).  We 
thought we could create similar judgmental contrast effects using images rather than prior questions 
to set the standard for the target items. 
 
This experiment was embedded in a Web survey conducted by MSInteractive.  In March and April 
of this year, MSInteractive sent e-mail invitations to 39,217 members of SSI’s Web survey frame. 
The e-mail invitation asked them to complete a survey of attitudes and lifestyles sponsored by the 
National Science Foundation; it included the URL for the questionnaire.  The SSI frame consists of 
some seven million e-mail addresses collected at various Web sites.  A total of 3,179 persons started 
the questionnaire, 2,722 of them getting all the way through it.  The response rate was 6.9 percent 
(not counting the partials) or 8.1 percent (counting them). 
   
The experiment compared the impact of two pictures on respondents’ judgments of their overall 
health (that is, responses to an item asking, “How would you rate your health?”). One group of 
respondents saw photograph of a healthy young woman jogging; another group saw a picture of a 
woman in a hospital bed.   The experiment also compared three different positions for the picture — 
on the prior screen just before the health item, on the same screen in the survey header, or just to the 
left of the question text.  Figure 1 displays examples of the pictures we used.  
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Figure 1.  Images used in Study 2 

a. Sick Woman — Picture in Header 
 

c. Sick Woman—Picture in Header 

 

 

 

 

 

 

 
b. Fit Woman — Picture to Left of Question  

 

 

 

 

 

 

 

 

 
c. Fit Woman — Picture on Prior Screen 
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As expected, the pictures affected the self-ratings of health, lowering them on average for the 
respondents who got the picture of the healthy woman jogging (mean of 2.64) and raising them on 
average for those who got the picture of the sick woman in bed (2.58).  (Higher numbers indicate 
worse health.)  The overall effect of the picture was only marginally significant — F(1, 2309) = 
3.08, p < .08.  But we didn’t expect the significant interaction between the position of the picture and 
its content; that interaction is displayed in Figure 2.  When the picture is in the in the header, 
assimilation rather than contrast seems to be the result. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
At least in some conditions, then, images provide a standard of comparison against which our 
judgments of later targets, such as our own health, are contrasted. 
   
Images in the interface.  Tourangeau, Couper, and Steiger (2003) reported another series of 
experiments that incorporated images as part of the interface of a Web survey.  (These studies were 
done by the Gallup Organization.  Because these studies have been published, we omit the 
methodological details here.)  Figure 3 below shows an example of the images the interface 
incorporated.  The opening screen displayed the female face of one of the investigators (Steiger); 
other versions of the questionnaire displayed a male picture.  Across two separate Web surveys, we 
examined the impact of the interface on answers to a variety of questions.  For the most part, it 
didn’t matter whether the survey had a male or a female “face,” but for one set of items it did.  These 
were a battery of questions on sex roles that are known to be affected by the sex of the (live) 
interviewer (Kane and Macauley, 1993).   Men and women both give more pro-feminist responses to 
these items when female interviewers administer them than when male interviewers do.  We found a 
similar pattern with our “virtual” interviewers; the responses were more pro-feminist when the 

Figure 2.  Health Ratings, by Picture and Position
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survey had a female “face” (as in Figure 3) than a male one.  We suspect that this is a priming effect; 
when the respondents see the picture of an attractive working woman, it tends to bring to mind 
consistent (that is to say, positive) thoughts about women in the work place.  The male interface 
tends to bring to mind more traditional views about the roles of men and women.    

 
 

Figure 3.  “Female” Interface used in Web Surveys 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Researchers in human-computer interaction tradition have reported even more striking results.  For 
example, Walker, Sproull, and Subramani (1994) administered questionnaires to people using either 
a text display or one of two talking-face displays to ask the questions. Those interacting with a 
talking-face display spent more time, made fewer mistakes, and wrote more comments than did 
people interacting with the text display. However, people who interacted with an expressive face 
liked the face and the experience less than those who interacted with an inexpressive face.  In 
another experiment, Sproull and colleagues (1996) varied the expression of a talking face on a 
computer-administered career counseling interview; one face was stern, the other pleasant. The faces 
were computer-generated images with animated mouths.  They found that:  

 
People respond to a talking-face display differently than to a text display. They 
attribute some personality attributes to the faces differently than to a text display. 
They report themselves to be more aroused (less relaxed, less confident). They present 
themselves in a more positive light to the talking-face displays.  (p. 116).  
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The interface to a survey, particularly when it incorporates humanizing visual cues, may itself 
constitute a contextual stimulus, one that is capable of altering respondents’ views of the survey and 
their responses to the questions. 
 

Spacing and Position 

Spacing of the response options.  Our experiment on self-rated health investigated a second issue 
besides the effect of the photographs. The question following the standard health item asked 
respondents how likely it was they’d get sick enough during the next year that they have to spend a 
day or more in bed (“During the next year, what is the chance that you will get so sick that you will 
have to stay in bed for the entire day or longer?”).  We varied the spacing of the response options 
that made up the scale on which respondents were to indicate their answers.  This experiment is one 
of a number we’ve done that share the notion that respondents follow simple heuristics in 
interpreting the visual features of questions.  Though these interpretive heuristics are often useful, 
they may sometimes lead to unintended inferences about the meaning of a question. Hoffman (2000) 
argues that interpretive rules are central in visual processing and are responsible for such key 
abilities as depth perception. The heuristics for interpreting visual stimuli can sometimes lead to 
systematic misinterpretations of those stimuli, producing optical illusions. In the same way, the 
application of interpretive heuristics for visual cues in questionnaires can lead to erroneous 
inferences about the meaning of survey questions. 
   
One of these heuristics involves seeing the option that is physically in the middle of the scale as 
representing the scale midpoint; we refer to this as the “middle means typical” heuristic.  We varied 
the spacing of the response options to the question about the chance of a sick day in bed.  
Approximately half of the respondents got the item with evenly spaced response options (see Figure 
4); the remainder got a scale in which four of the seven options were to the left of the visual 
midpoint of the scale. 

 
Figure 4.  Scales Used in Experiment on Spacing of Response Options 



32   

The ratings were significantly higher when respondents got the unevenly spaced scale (the top one in 
Figure 4) rather than scale that arrayed the response categories evenly (the bottom one).  The means 
were 4.60 in the even spacing condition versus 4.45 in the uneven spacing condition; F(1, 3083) = 
7.58, p< .01. 
  
Separating substantive and nonsubstantive options.   In one of our Gallup surveys, we did 
another study that demonstrated the importance of the spacing of the response options.  That 
experiment  compared two methods of separating nonsubstantive response options (Don’t know, 
Refused) from substantive ones.  In one case, the nonsubstantive options were simply presented as 
additional radio buttons; in the other, we included a divider line that clearly separated the 
nonsubstantive options from the rest (see Figure 5).  

 
Figure 5.  Formats for Displaying Nonsubstative Options 

a. Divider Line Version  

  

 

 

 

 

 

 

 

 
b. Version with No Divider Line  
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In the version with the divider line, the visual midpoint of the scale falls at the conceptual midpoint 
(“About the right amount”).  In the version without the divider, the visual midpoint actually falls on 
one end of the scale (“Too little”).  This difference affected the average responses — there’s a 
significantly lower mean without the divider than there is with it.  Moreover, the divider line seemed 
to draw attention to the nonsubstantive options; there are significantly more nonsubstantive answers 
given when the divider line is displayed (21.4%) than when it’s omitted (17.5%). 
 
Positional inferences.  Another heuristic respondents may use in understanding and applying 
response options is the “Left and top mean first” heuristic.  According to the heuristic, the leftmost 
or top item in a list of items represents the “first” in some conceptual sense.  For example, when the 
list is a series of ordered response categories or scale values, respondents expect the top or leftmost 
option to represent one of the two endpoints (“Agree strongly”) and they expect each of the 
successive options to follow in some logical order (“Agree,” “Neither agree nor disagree,” and so 
on).  If the list does not conform to these expectations, respondents may become confused, make 
mistakes, or take longer to respond. 
   
Our first Web study with MSInteractive experimentally varied the order of the response options in 
six of the survey questions.2  We carried out two independent experiments, one with four frequency 
items and the other with two agree-disagree items.  We focus here on the results from the agree-
disagree items. Each experiment compared three versions of the questions.  In one version, the 
response options followed the logical order. For the agree-disagree items, this version went from 
“Strongly agree” to “Strongly disagree” with “It depends” in the middle.  A second version 
presented the options in order of decreasing agreement, with “It depends” as the final option).  In the 
final version, “It depends” was the first option presented, but the remaining options were ordered by 
extremity (“Agree strongly,” “Disagree strongly,” “Agree,” and “Disagree”).  Respondents got all 
the response options in the same order for all four of the frequency items; similarly, they randomly 
assigned to receive one of the three versions for both agree-disagree items. 
   
We anticipated that respondents would answer the questions most quickly when the items followed 
the order implied by the “left is first” heuristic, with the slowest answers in the third version of the 
questions (where the order of the response categories departs most sharply from the order implied by 
the heuristic).  Three of the six items showed significant differences in response times and all three 
show the expected pattern.  Figure 6 below displays the average response times for the two agree-
disagree items — Q13 (“It is SENSIBLE to do exactly what the doctors say”) and Q14 (“I have to be 
VERY ILL before I go to the doctor”) in the experiment.  For both items the differences in reaction 
times across experimental treatments were highly significant:  F(2,2533)=18.7 for Q13 and  
F(2,2591)=12.6 for Q14.   
 

                                                 
2In February and March of 2002, MSInteractive conducted a Web survey, in which 14,192 e-mail 

invitations were sent to members of SSI’s Web survey frame.  The e-mail invitation asked them to complete a 
survey sponsored by the National Science Foundation.  A total of 2,871 persons started the questionnaire, 
2,568 of them getting all the way through it, for a response rate of 18.1% (not counting the partials) or 20.2% 
(counting them).  Among other experiments, the survey included one that compared three response formats.   
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Figure 6.  Response Times and Consistency with Heuristic 
 

 
 
 
  
  
  

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
Another implication of the “Left is first” heuristic is that respondents may use it to infer the 
characteristics of an unfamiliar item from its position in a list of similar items.  For example, we 
compared the percentage of respondents rating the Fiat Tipo as an expensive car when it came third 
in a list of cars that included the BMW 318, Acura Integra, Mazda Protégé, Toyota Corolla, Dodge 
Neon, and Geo Metro to when it came last seventh — right after the Geo Metro.  Respondents were 
significantly more likely to say the Tipo was an expensive car when it came third in the list (72.4%) 
than when it came last (60.3%; χ2 = 45.3, df =1, p < .001).  We found similar results for three out of 
five other items (see Table 2 below).   

 
Table 2.  Proportion Yes (and Sample Size), by Position in List 

Percent Yes (n) Judgment/Item 

Third in List Seventh in List 

Important for healthy diet/Isoflavin  44.4 (1396) 43.2 (1326) 

Low in saturated fat/Cod liver oil  42.7 (1396) 36.7 (1326) 

Expensive hotel/Clarion Inn 61.5 (1396) 44.3 (1326) 

Expensive city/Ocala,FL 51.5 (1396) 59.1 (1326) 

Expensive midsize/Austin Rover 92.0 (1396) 86.0 (1326) 

Expensive small car/Fiat Tipo 72.4 (1396) 60.3 (1326) 
 
  Note:  The differences between columns are significant (p < .05 or less) for all but the first row. 
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The Visibility Principle 
 

Images, spacing, and positioning all have an impact on the answers.  We have also looked at how the 
method of presenting the response options can affect the distribution of the answers.  We compared 
radio buttons (a format that displayed all 11 answer options from the outset), drop down boxes in 
which only the first five answer options were visible initially, and drop down boxes in which none of 
the options were visible until respondents clicked on the drop down arrow.  Figure 7 shows the key 
conditions.  In addition, the experiment varied the order of the answer options.  Approximately half 
of the respondents got the response options in one order; the rest got them in the reverse order.  
  

Figure 7.  Formats Compared in Response Format Study 

a. Drop Box — None of the Options Visible 

 

b. Drop Box — Five Options Visible  

 

 

 

 

c. Radio Buttons  
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Our main hypothesis was the respondents would focus on the options they could see and thus would 
be more likely to select one of the five options displayed initially in the drop down box.  Figure 8 
displays the key result.  In all three response formats, respondents were more likely to select one of 
the first five options listed in Figure 7c. above (“Protein” through “Fiber”) when these were the first 
five options listed than when they were the final five.  This is a classic primacy effect and similar 
effects are often found with items displayed visually (Krosnick & Alwin, 1987; Krosnick, 1991); 
however, the effect is far more marked in the drop down box condition in which only the first five 
options were visible.  We included a replication of this experiment (Q20) later in the questionnaire, 
and the results are similar to those in Figure 8.  The key interaction of response order and response 
format was highly significant for both items.  When it takes additional effort to see some of the 
options, respondents are especially unlikely to choose them.  Redline and Dillman (2002; see also 
Jenkins and Dillman, 1995) have also emphasized the importance of visual prominence. 

 
 

Figure 8.  Impact of Response Format and Response Order 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Getting help.  Our first MSInteractive survey also included experiments that examined the impact of 
the accessibility and usefulness of on-line definitions for survey terms.  Respondents were asked to 
evaluate (on a five-point scale) whether they consume as much as they should of four food/nutrition 
products. They were told that they could obtain a definition for any of the terms by clicking on them 
but were not specifically instructed to do so.  The primary concern in the study was how often they 
obtained definitions.  Our initial hypotheses were that respondents would be deterred from obtaining 
definitions if it was hard to access them or if the definitions did not provide useful information, 
information relevant to the respondent's judgment. 
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Respondents were able to obtain definitions in one of three ways that varied the number of clicks 
required: (1) they could display the definition by simply clicking on the highlighted term in the 
question (one click); (2) they could display the definition by first clicking on the highlighted term, 
which displayed a list of all terms for which definitions were available, and then by selecting 
(clicking on) the term of interest in the list (two clicks); or (3) they could display a definition by 
clicking at least twice, first on the highlighted term which displayed a text file glossary, and then by 
scrolling the glossary (clicking the scroll bar at least once) to locate the definition of interest.  We 
created “useful” definitions by including some surprising information that might alter respondents’ 
judgments, e.g., the fact that vegetables include French fries. The idea was that respondents might 
answer differently when they read this kind of definition than when they did not.  In contrast, the 
definitions we created to be “not useful” presented information that was unlikely to affect 
respondents’ answers. Consider the definition for hydrogenated fat: “A fat that has been chemically 
altered by the addition of hydrogen. Vegetable shortening and margarine are hydrogenated fats.” The 
information in the definition is accurate but not very helpful in evaluating one’s consumption of 
hydrogenated fat. 
 
It is probably not a surprise that respondents tended to ignore the definitions when they had to do 
something to make them visible.  Only 17.4% of the respondents (a total of 501 of them) obtained 
definitions.  This is quite low considering that definitions may, potentially, be essential for 
respondents to interpret questions in the intended way.  The respondents may have been unaware 
that question terms could have special meanings or the instructions may not have indicated the 
potential value of the definitions.  When respondents did obtain at least one definition, they did so 
overwhelmingly (89% of the time) for technical terms (e.g. “antioxidants”), where meaning was an 
obvious concern.  Their relatively infrequent requests (11% of the time) for definitions of non-
technical terms (e.g. “dairy products”) suggest it is easy for respondents to overlook possible 
differences between their interpretation and the intended one (for example, the definition of dairy 
products included “cheesy foods like pizza” though many respondents probably would not ordinarily 
include these).  The difference due to the type of terms (p < .001) suggests that at least sometimes 
respondents did not get any definitions because they did not realize they might need them. 
   
Another factor in the low percentage of respondents who accessed definitions was that the amount of 
effort required; even one click was more than what respondents were willing to expend.  Those 
respondents who did obtain definitions did so far more often when one click was required (56% of 
the time) than when two or three were required (24% and 20% of the time respectively).  The 
difference due to effort (number of clicks) required (p < .001) may indicate that those respondents 
who never obtained definitions at all were unwilling to invest even one click. The general 
implication is that interactive features in Web surveys should be designed so that they are very easy 
to use, requiring no more than one click.  When the process involves multiple steps, respondents 
may begin to invoke the feature, but they are relatively unlikely to complete it.  Respondents using 
the two-click interface started the process by clicking on the highlighted term in the question 629 
times but completed it by selecting the term from the list only 246 times.  Unless an item is easily 
seen or it’s on the critical path for completing the task, it is unlikely to have much impact on 
respondents. 
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Conclusion 

Although we’ve presented quite a few results, we can boil them down to three main themes: 
 

� Respondents attend to pictures and the pictures they see can affect their answers; 
 
� They also attend to the position and spacing of the response options and they use 

simple heuristics to interpret these and similar visual cues;    
 
� They tend to attend to what’s immediately visible and to overlook information they 

have to make visible.  
 
Consider first the effects of pictures in Web questionnaires.  We argue that photographs and other 
images are powerful contextual stimuli.  They can render some instances of a target category more 
accessible to retrieval than others, leading to assimilation effects.  For example, when the pictures 
display infrequent instances of a category, respondents give lower frequency estimates for the 
category.  By contrast, when the pictures cue more frequent instances, respondents give higher 
frequency estimates.  Similarly, pictures can serve as standards of comparison.  Show the 
respondents a picture of a healthy young woman jogging and they may lower their ratings of their 
own health.  Show them a woman in a hospital bed and it boosts the ratings of their own health.  And 
the effects of pictures are not confined to pictures incorporated into the questionnaire itself, but may 
extend to photographs intended to create a “human” interface for the survey.  The image of a woman 
professional may subtly alter responses to questions about sex roles. 
 
Our studies also demonstrate the impact of spacing and positional cues on answers.  The importance 
of these and similar cues has been demonstrated repeatedly in the work of Redline and Dillman as 
well.  Like Redline and Dillman (Jenkins & Dillman, 1995; Redline & Dillman, 2002), we find 
support for the general conclusion that respondents have expectations about the visible aspects of 
survey questions.  They expect a series of items or response options to follow a logical progression 
from left to right or from top to bottom.  They slow down when this expectation is violated.  They 
may infer something about unfamiliar items, such as hotel chains or cars, from their position in a list 
of similar items.  When items are grouped, respondents expect them to be related to each other; as a 
result, presenting a battery of items on a single screen leads to higher intercorrelations among them 
then presenting them individually on successive screens (Couper, Traugott, and Lamias, 2001).  
Finally, respondents expect that the conceptual midpoint of the scale to fall at the visual midpoint.  
When the visual and conceptual midpoints don’t coincide, it throws them off and may affect their 
answers. 
  
People attend to the information that they see.  They give more weight to information that they can 
see than to information that’s not immediately visible.  If respondents have to work to see a response 
option (for example, when a drop box doesn’t display all the options initially), they are less likely to 
select it.  If they have to click to see a definition for a key term, they are unlikely to do so; and if 
they have to click more than once, they are even less likely to bother.  It is probably useful to think 
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of visibility as a continuum, ranging from information that can only be seen with great difficulty to 
information we can hardly ignore.  If we want respondents to attend to something, we need to make 
it not just visible, but visually prominent.  Otherwise, they are likely to ignore that information in 
favor of information that easily seen. 
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Discussion of 
 The Impact of the Visible 

 
Cleo Redline 

National Science Foundation 
 

I am very honored to be here today to discuss the work presented by Tourangeau and his colleagues. 
Before I talk about the specifics of their research, however, I would like to begin with some 
background.   
 
Over the years Dillman and I have come to suggest that respondents make mistakes responding to 
visually-administered questionnaires (that is both paper and Web) not only because they do not 
understand the verbal language of the questionnaire, but because they do not understand the 
numeric, symbolic, and graphic language as well.  (Redline and Dillman, 2002). The verbal language 
refers to the words, the numeric, the numbers, the symbolic, the symbols, like arrows, and the 
graphic language is the conduit by which all of the other languages are conveyed and includes the 
brightness, color, shape, and location of the information.  The reason I have reiterated this 
framework here is because I used it to process the results of the Tourangeau paper, which I think we 
can all agree are very impressive and very exciting.   
 
I propose rearranging the original content of the Tourangeau et al. paper.  I propose discussing the 
topic Spacing and Position first and Images as Context last. 
 
 

Spacing and Position or “Location, Location, Location” 
 

Spacing and position is mostly about manipulating the visual element of ‘location,’ so conceptually 
it is simpler or more elemental than the remaining topics.   Then within Spacing and Position, I 
propose leading with positional inferences because it tested the heuristic ‘left and top’ means first, so 
conceptually it is a good place to begin. Then the remaining two categories, which demonstrate that 
the physical middle means midpoint, logically follow.   

 
Left and Top Means First 

 
In 1945 Brandt published an eye-movement analysis using a card with squares that were 
symmetrically located about a locus (Brandt, 1945).  The results of his study may be one of the first 
to demonstrate the heuristic that the left and top of a space is first because he found that all things 
being equal, subjects’ eyes were naturally attracted to the upper left-hand quadrant, and that the least 
preferred space was the lower right hand quadrant.   

 
However, as we know, items are NOT of equal interest in a questionnaire.  There are what we might 
call conceptually related zones.  The work presented today suggests that respondents attribute 
meaning to the physical space of a conceptual zone.  If one overlays physical quadrants on 
conceptual spaces, one finds that, unless influenced otherwise, respondents tend to process 
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information within a conceptual space in a somewhat predictable order, starting at the top, and left 
and working across then down, and as shown by Tourangeau and his colleagues, they attribute 
meaning to the order in which they process this information and its position within this space.    

 
However, surveys begin to get complicated, the moment we deviate from using standard text in a 
standard size and font because it is clear we really don’t understand the effect of the other languages 
yet—a case in point is the divider line that was used to separate the substantive from the 
nonsubstantive answer categories.  The divider line is an example of using the additional language of 
symbolic language from the Redline and Dillman framework.  Tourangeau and his colleagues 
discovered that not only did the divider line (this symbolic language) influence respondents’ answer 
choices within the substantive range as predicted; it also had the unintended consequence of 
attracting respondent’s attention to the nonsubstantive response options.   

 
We witnessed similar effects in the Census questionnaire.  For instance, the population count 
question, the most critical question on the questionnaire was supposedly ideally positioned in the 
upper left-hand corner of the questionnaire, under the heading of Step 1, but the results of an 
experiment informed by cognitive interviews revealed that respondents were drawn to the large write 
in space for their name instead, which falls much further down the page under Step 2, Person 1 
(Dillman et al., 1996).  This is an example in which all of the languages (that is, the verbal, 
symbolic, numeric, and graphic) conspired to draw respondents’ attention away from the most 
critical question on the questionnaire to a question that was of little importance located further down 
the page.  Thus, the ‘left and top means first heuristic’ can be overruled in ways that we are 
beginning to identify and slowly come to understand.     

  
 

Visibility Principle or “Out of Sight, Out of Mind” 
 
The visibility principle is conceptually related to the last topic in that we are still talking about 
manipulating the visual element of location, it is just that now we are moving things, relocating 
them, response options in this case, and definitions in the second, so that it requires additional effort 
on respondents’ part to find them. 
    
I learned as a result of eye-movement research with branching instructions that as little as 9 to 12 
characters can place information out of view (Redline and Lankford, 2001), so it is not surprising that 
if information is placed behind closed doors, so to speak, in drop down boxes, or behind links, 
respondents will be less likely to see it, but it is great to have more experimental confirmation to this 
effect.  

 
A recent example I have of the visibility principle comes from my work with the Graduate Student 
Survey at the National Science Foundation.  This survey has both a paper and a Web version—and 
of the 17 interviews I’ve conducted with this survey, not one person has ever accessed any of the 
Web definitions, which are hidden behind a help menu that is itself hidden from view in the upper 
right hand corner.   
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And the paper questionnaire is barely any better because the definitions are provided in what can 
only be called a thicket of text—my point here is that things can be hidden when they appear to be in 
clear view too.    
 
Images as Context or “A Picture is Worth a Thousand Words” 
 
What we learn in this section of the paper is that pictures can prime memories, in a sense they can 
provide definitions for respondents, or they can act as standards of comparisons.  However, when the 
picture is in the header, assimilation rather than contrast seems to be the result.  This made me think 
about Feynman’s description of science as a chess game, the fact that is the scientist’s job to figure 
out the rules of the game from observing it being played.  And just when you think you have the 
rules figured out, someone will castle, and you’ll go, ‘what was that??!!”  I began to wonder if a 
possible explanation was that the picture in the header was less visible and therefore having less of 
an effect.  It was then that I realized that we needed a no picture condition to compare to, just to rule 
out this possibility.  However, I don’t really think that is what this is because I would expect the 
results to converge in the ‘within header’ condition.  I really think this may be a castle--something 
exciting to look forward to solving.   
 
 

Impact on Federal Statistics 
 

Before I conclude, I would like to reflect on how I think the research presented today will impact 
Federal Statistics.  On the one hand, I’m excited because I think it is going to go a long way towards 
bringing attention to these much-deserved issues.  And I also think that, as a result, we will be better 
poised to conduct high quality household Web surveys, especially attitudinal and behavioral surveys. 
 So I most certainly think we should continue in this vein.   However, I must also admit to being 
concerned, concerned that too much emphasis is going towards the design of Web surveys when 
paper surveys are still the real work horses.   

 
Take for instance the survey I mentioned earlier, the Graduate Student Survey.  It is an establishment 
survey with both a paper and Web component.  The Web component gets an 80 percent response 
rate, so it was taken for granted that respondents were answering the Web survey—but when I went 
into the field I discovered that 70 percent of the respondents were actually filling out the paper 
questionnaire first or performing hand calculations on paper, then simply using the Web as a 
dissemination tool.  Thus, paper remains an important tool for respondents, and the true interface 
between the survey and the respondent is often the paper questionnaire, not the Web.    

 
Also, it is often said that because of the differences between paper and the electronic medium, paper 
questionnaires cannot simply be transferred to the Web--that the translation process is simply not a 
one-to-one mapping (e.g., Murphy et al., 2001).  But this philosophy ignores the fact that many of 
these paper questionnaires are so poorly designed to begin with that one would not want to copy 
them to the Web as they are.  A word of caution I have, therefore, is not to overlook the design of 
paper surveys in our frenzy to design good Web surveys.  It may be that the two will need to work in 
unison, and if we have people working in isolation on one version or the other, which is the direction 
I see things moving right now, I think we are headed for trouble.   
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Conclusion 

 
That word of caution aside, I would like to end by saying that without a doubt this is an exceptional 
set of experiments that provides a great deal of evidence in support of the notion that the visible 
matters.  Although the experiments were carried out in Web surveys, I have tried to demonstrate that 
there is every reason to believe that the underlying principles hold true for paper questionnaires too, 
which I would sum up as:  location, location, location; out of sight, out of mind; and a picture is 
worth a thousand words.   
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Abstract 

 

In this paper a new approach representing a generalization of Fay-Herriot (1979) (FH) to unit-level nonlinear 

mixed models is presented which, like FH, employs data aggregation but through design-weighted estimating 

functions rather than estimators.  Working with estimating functions (EFs) helps to alleviate the problems 

associated with FH because EFs, in general, can be better approximated by normality even for modest sample 

sizes, and can always be collapsed, if necessary, to improve the Gaussian approximation and the precision of 

variance estimates.  Also, EFs can be based on unit-level covariate information, and can be specified at the 

lowest level of aggregation to avoid the problem of internal inconsistency.  For hierarchical Bayes (HB) small 

area estimation, the proposed approach simply replaces the likelihood (typically computed under the 

assumption of ignorable design) with the estimating function based Gaussian likelihood which does not 

require ignorability of the design. The method is illustrated by means of a simple example of fitting a HB 

linear mixed model to data obtained from a nonignorable sample design.  Both fixed and random parameters 

are estimated to construct small area estimates.  Different scenarios for nonignorability are considered.  

MCMC is used for HB parameter estimation. 

 

Key Words:  Estimating functions; Pseudo Score Functions; Survey weighted HB; MCMC

 

1.  INTRODUCTION 

 

This research on small area estimation (SAE) was motivated by the problem of fitting generalized linear 

mixed models to survey data when unit-level covariate information is available.  The problem arose in the 

context of the 1999 National Household Survey on Drug Abuse (NHSDA), see Folsom, Shah, and Vaish 

(1999).  In the NHSDA, one of the outcome variables (y) of interest is past month marijuana use by persons 

aged 12-17.  For this dichotomous variable, one can use as covariates person-level demographic variables, 
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census block-group-level demographic variables, census tract-level demographic and socioeconomic status 

variables, and inter-censal county-level variables including drug-related arrest, treatment and death rates.  For 

estimating propensity of marijuana use at the state-level (treated as a small area), the following hierarchical 

Bayes (HB) model similar to the one considered by Folsom et al. may be formulated: 

 

( )
( )

( ) ( )
( ) ( ) ( )0

2 2

2 2 2 2
0 1 0

, ~ Bernoulli 

~ 0, , ~ 0,

~ , ~ 2, 2 , ~ 2, 2
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ijk ijk i ij

i iid ij iid v

p
v v
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N v N
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η

η η

µ ε µ

µ β η

η σ σ

β σ ν σ σ ν σ

= +

′= + +
 (1.1)

  

where yijk denotes the observation on the kth individual from the jth cluster (such as a county) in the ith stratum 

(such as a state), xijk is the corresponding individual-level covariate vector, and g(⋅) is the link function (such 

as the logit).  The p -dimensional fixed parameter β has an improper uniform distribution on the p -

dimensional space of real vectors, and the variance components 2
ησ , 2

vσ  have nearly flat inverse Gamma 

priors with very small location and scale parameters 
0

2
0 0, 0ην σ> > ,

0

2
1 0, 0vν σ> > .  The model errors ε’s 

are independent of each other, and also independent of the random effects η’s  and v ’s. 

 

In the context of survey data, the model (1.1) is a super-population model assumed to hold for the finite 

population UN of size N.  For UN, let M be the number of strata ( 1, ,i M= K ), and iN  be the number of 

clusters in the ith stratum (j=1, …, iN ), and ijN be the number of individuals in the (i,j)th cluster (k=1, …, 

ijN ).  The parameters η1, …, ηM are the realized values from ( )20,N ησ .  The (random) parameters of interest 

are the stratum means, µi, and the domain means, µd where the domain d may cut across strata.  Thus,  

 ( ) , ,i ijk ijk i d id idj k i
N Nµ µ µ γ µ= =∑ ∑ ∑  (1.2)

                                                                                      

where γid is the proportion of domain-d units in stratum-i, and µid is the mean of the domain-d units in stratum-

i. Other parameters of interest may be the overall mean ( )i, where i i iji j
N Nµ γ µ γ= =∑ ∑ , and the fixed 

parameters α, β, 2
ησ  and 2

vσ . 

 

The observed data is a sample ( s ) of size n  from the finite population UN.  If the sample design, ( )p s , is 
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ignorable for the model (1.1), i.e., the model (1.1) also holds for the sample, s , then the usual HB estimation 

theory can be applied to s .  However, if the design is nonignorable, use of the standard likelihood in the HB 

framework would lead to a biased posterior distribution, because the model (1.1) cannot be assumed to hold 

for the sampled data due to selection bias.  This is discussed further in   Section 2. 

 

In Section 3, we consider existing solutions based on the seminal work of Fay-Herriot’s (1979) aggregate- 

level model, and show how it takes account of the survey design. However, it does have some limitations 

which are also discussed.  Section 4 provides motivation for the alternative proposed solution which is 

described in Section 5 in the context of a simple example of mixed linear models.  The MCMC steps for the 

proposed HB-SAE method are described in section 6. Sections 7 and 8 describe the simulation experiment 

and results. The case of mixed nonlinear models is considered in Section 9 which also shows how the 

proposed method compares with the alternative method of Folsom et al. originally proposed for the NHSDA 

application. Finally we conclude the paper with some remarks in Section 10. 

 

2.  NONIGNORABILITY OF SAMPLE DESIGN 

 

Consider a super-population model which is assumed to hold for the finite population UN.  For the sake of 

simplicity, we first consider a simple linear mixed model for the observations yij on the unit j in the ith cluster, 

( 1, ,i M= K ; j=1, …, iN  ).  We have 

 ij ij i ijy x β η ε′= + +  (2.1)     

                                                                                                                

where ( ) ( )2 2~ 0, , ~ 0,ij iid i iidN Nε ηε σ η σ , β is a p -vector of fixed effects, and xij is a p -vector of covariates 

associated with the unit j in the cluster i.  Here ηi’s are random cluster effects. 

 

We note that in practice it is almost impossible to include in the model all the factor effects (main and 

interaction) of design covariates such as cluster characteristics that are deemed to be related to the outcome 

variable y.  This happens for several reasons:  (i) the need for a parsimonious model, (ii) the need to avoid 

instability of parameter estimates, (iii) the model should correspond to the analyst’s goals, and (iv) some 

covariates at lower levels are excluded due to unavailability of lower level population totals; these totals are 

needed in defining finite population parameters. 

 

Since sample selection probabilities may depend on the outcome variables through design covariates, and 
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since all the factor effects due to design covariates may not be controlled in the model, it is difficult to assume 

that the design can be ignored for the model under consideration.  This is why many survey samplers prefer to 

follow the conventional wisdom of playing it safe by taking the design into account.  There are two main 

scenarios in small area modeling which make the design nonignorable. 

 

Scenario I.  Here small areas are, in fact, design strata, and the random effects iη ’s correspond to these strata. 

 Sampling within each stratum is informative in that the sample inclusion probability πij depends on εij.  Note 

that the factors corresponding to design covariates ( 2x , say), which are omitted from the model but are 

correlated with yij, become naturally part of εij.  This is easily seen from the following expression for the 

reduced model ( )1|y E y x ε ′= + , ( ) ( )( )1 2 1| , |E y x x E y xε ε′ = − +  when the enlarged model is 

( )1 2| ,y E y x x ε= + . 

 

Scenario II.  Here, small areas are like domains, and the random effects iη ’s correspond to these domains.  

Note that each domain may cut across design strata.  In each stratum, sampling may be informative in that the 

sample inclusion probability of the (i,j)th unit in the hth stratum, πh(ij) may depend on ηi or εij or both.  This is 

again for the reason that effects of design covariates which are not part of the model covariates x’s, become 

automatically part of the residual, ηi + εij; here the residual has two components, ηi and εij. 

 

Now, in Bayes or hierarchical Bayes estimation, we need specifications of the likelihood, ( )2| , ,L y εβ η σ  and 

of prior distributions.  If L(⋅) is misspecified, the posterior distribution, [ ]yθ , is not correct for parameters of 

interest θ .  (For instance, i xi iAθ β η′= + , is (approximately) the ith area mean where 0ij ij
Nε ≈∑  for large 

Ni, and Axi is the mean of x for the ith area, i.e., xi xi iA T N= , xi ijj
T x=∑ .)  Thus, any characteristic of [ ]yθ , 

in particular the posterior mean, could be (seriously) biased in that 

 ( )| * | 0yE E yθ θ θ− ≠⎡ ⎤⎣ ⎦       (2.2)                          

 where E* denotes the posterior expectation based on the misspecified likelihood. 

 

In the next section, we consider the existing solution of Fay and Herriot (1979, henceforth referred to as FH) 

in which the sampling design is taken into account by working with the aggregate-level data.  Note that for 

aggregate statistics such as weighted sample totals or means, design-based variances and covariances can be 

estimated, and their distribution can be approximated as Gaussian.  It is difficult in general to specify the 
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distribution of the unit-level data because there is not enough information about the distribution of the N-

vector of sample inclusion indicators.  In fact, typically, not even all the first order inclusion probabilities are 

known, let alone second or higher order inclusion probabilities. Some alternative approaches based on 

modeling of selection probabilities have been proposed by Pfeffermann and Sverchkov (1999). However, with 

the desirable goal of making minimum modeling assumptions for SAE, a way out might be to do efficient 

aggregation of data that incorporates unit-level information, and then use sampling weights as in FH, see 

Section 4.  It may be remarked that unlike the census data which is based on nature’s selection mechanism of 

the finite population, the sample from the finite population is based on man’s selection mechanism, and hence 

the sampler knows very well what should not be assumed away.  This is probably why the analysis of survey 

data becomes quite challenging, and thus distinguishes itself from the mainstream of statistics. 

 

3.  EXISTING SOLUTION:  AGGREGATE LEVEL MODEL OF FH 

 

The work of FH represents a milestone in the history of the development of SAE as it is the first method that 

takes design into account in small area modeling.  The basic idea is to transform the unit-level data (y) to 

aggregate-level data ( )y%  by using the direct small area estimates, ( ), 1
ˆ in
i dir ij ij ij

y w wθ +=
=∑  where wijs are the 

(calibrated) design weights, and ( )1
in

i ijj
w w+ =

=∑  is typically equal to Ni due to weight calibration.  Thus, in 

FH, the data is first condensed into M estimates which are modeled as follows.  We will consider only 

Scenario I for the sake of simplicity.  For 1, ,i M= K ; we specify the following 

 ,
ˆObservation model:  ,

Link model:             ,
i dir i i

i xi i

e and
A

θ θ

θ β η

= +

′= +
                                                 (3.1) 

where ( ) ( )2~ 0, ( ) , ~ 0,i iide N diag V N ηη σ& . 

Here, V  denotes the vector of design-based variance estimates that are regarded as known.  In practice, they 

could be smoothed by suitable modeling; FH used generalized variance functions to smooth V , while Otto 

and Bell (1995) proposed a parameterization of Cov (e) along with a suitable  prior under a Bayesian 

framework.  Even if variance estimates are not smoothed, one could still treat them as known and meet the 

goal of SAE modeling. The reason for this is that the main goal of SAE modeling is to see whether variances 

of SAEs after borrowing strength from other areas via modeling can be reduced appreciably in comparison to 

the variances of direct estimates. Note that under the assumption of unit- level model (2.1), there is another 

error term involving εij in the link model (3.1) given by 
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 1
,iN

i xi i ij ij

xi i

A N

A

θ β η ε

β η
=

′= + +

′≈ +

∑                                                        (3.2) 

where the term 0ij ij
Nε ≈∑  by SLLN, because Ni is expected to be very large in practice even though ni 

may be small.  Similarly, the Cov(e) in the observation model involves 2
εσ  when the covariance is computed 

under both design and model randomizations, i.e., when the super-population expectation of the design-based 

covariance is taken.  However, it is better to use just the design-based estimate of Cov(e) for several reasons:  

firstly, the actual computational form for Cov(e) under complex designs may be quite complex involving 

unknown second order inclusion probabilities, and so computation of its expectation may be prohibitive; 

secondly, even if the expectation involving 2
εσ  is computable, one cannot produce good estimates of  both 

2 2 and ε ησ σ   from the aggregate-level data because it is hard to discriminate between them without unit-level 

data; and thirdly, the design-based estimate of Cov(e) has the desirable property of robustness to departures 

from the link model. 

 

The Gaussian approximation of ,î dir iθ θ−  in the FH set-up is based on the Central Limit Theorem, and using 

this, FH proposed empirical Bayes estimators for θis.  However, if we were interested in HB estimation using 

the aggregate-level data, the unit-level likelihood L(y|⋅) can be replaced by the aggregate-level likelihood 

( )L y| ⋅% , and one can then proceed as in Datta and Ghosh (1991). 

 

Although the FH method represents a very important development in SAE methodology for survey data, it 

does suffer from a few limitations resulting mainly from aggregate-level modeling.  Note that when the unit-

level model is of interest, there is a loss of efficiency by using an aggregate-level model.  This is analogous to 

the case of using the grouped data mle instead of the raw data mle in chi-square goodness-of-fit tests.  While 

it is true that some loss of efficiency is inevitable when trying to take design into account, the issue under 

consideration is how to reduce this efficiency loss for unit-level models.  Below we list some limitations of 

the FH approach. 

 

(a) In the aggregate-level modeling approach of FH, unit-level covariate information is not exploited.  The 

more unit-level information is used, the more efficient the resulting estimators are expected to be. 
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(b) The FH model is specific to the level of aggregation used.  If we change the level of aggregation, we get a 

different model which is not internally consistent with the original model.  Note that the exchangeability 

assumption about iη ’s is specific to the level of aggregation.  This inconsistency problem becomes more 

acute when dealing with nonlinear models either in the mean function of the link model or in the dependent 

variable of the observation model.  For example, with the logit link function, mean at a higher level is not sum 

of the means at lower levels that make up the higher level of aggregation.  In practice, the additive property is 

clearly desirable.  We run into similar problems if îθ  is transformed through a nonlinear function such as 

ˆlog iθ .  Here, an additional problem arises in the definition of ˆlog iθ  when ˆ 0iθ = , see e.g. the report on SAIPE 

models by US Bureau of the Census (1998). 

 

(c) In FH, the Gaussian approximation of î iθ θ−  may not be reasonable for small to modest ni’s.  This may be 

more of a concern when dealing with discrete outcome variables. 

 

(d) Finally, smoothed variance estimates V may not be a good approximation for very small in ’s.  Note that, 

if the direct small area estimates ,î dirθ  are unstable (this is precisely the reason why we are modeling to 

borrow strength), then the variance estimates V  will, of course, be unstable. 

 

4.  MOTIVATION FOR THE ALTERNATIVE SOLUTION 

 

In this paper we propose a generalization of FH to unit-level nonlinear mixed models such that unit-level 

covariate information is efficiently used as well as some form of data aggregation is used to account for the 

sample design.  Recently, in an innovative attempt to account for the design, Prasad and Rao (1999) derived 

an aggregate-(or area-) level model for direct estimates from the unit-level model using survey weights, and 

obtained pseudo-optimal  SAEs.  It is pseudo in that the design was assumed to be ignorable, and so only the 

effect of  unequal selection probabilities (i.e., sampling weights) was accounted for in the joint design-model 

variance. Moreover, for estimating variance components, in addition to assuming that the design was 

ignorable, the unequal weighting effect was also not accounted for.  You and Rao (2003) used a similar 

framework for developing pseudo HB estimates.  The above methods, however, are applicable to only linear 

models because the aggregate-level model for direct estimates is derived from the unit-level model.  On the 

other hand, the method of Folsom et al. (1999) deals with unit-level mixed nonlinear models and develops a 

HB method using pseudo-likelihood involving survey weights and the corresponding survey weighted 
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estimating functions. However, the method assumes ignorability of the design, and the pseudo likelihood used 

for HB need not be a valid likelihood; see Section 7 for a brief discussion.  

 

Our goal is to attempt to take full account of the survey design in unit-level modeling, and to develop methods 

that apply to both linear and nonlinear models.  To this end, unlike FH we resort to data aggregation via 

survey-weighted estimating functions rather than through estimators.  Use of survey weighted estimating 

functions has been implicitly invoked by survey statisticians for a long time in ratio and regression type 

estimators, see e.g., Fuller (1975), Cassel, S@rndal, and Wretman (1976).  The pioneering work of Binder 

(1983) explicitly introduced a general theoretical framework of survey weighted EFs for deriving estimators 

of super-population parameters, and their asymptotic properties under a given sample design.  The optimality 

of survey-weighted EFs under joint design-model randomization was, however, established by Godambe and 

Thompson (1986) using the optimality framework of Godambe (1960).  As an example, for the simple mixed 

linear model (2.1), the optimal EFs for β and ηi’s have heuristically appealing forms and are given by 
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∑
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                                                (4.1) 

where wij’s are inverse of the first order selection probabilities πij’s. 

 

We propose to use the above set of EFs as the starting point for Bayes or HB estimation, i.e., the likelihood 

would be defined by the distribution of these EFs.  Clearly, EFs use unit-level information and they use it 

efficiently in view of their optimality properties.  It is also known that EFs can be better approximated as 

Gaussian even for modest sample sizes (McCullagh, 1991) because by their very nature, they are simple sums 

of elementary zero functions, although the elementary functions could be complex by themseleves. Moreover, 

EFs can be easily collapsed to improve the Gaussian approximation as well as the precision of variance 

estimates.  Notice that the serious problem of internal inconsistency can be avoided by defining the EFs at the 

lowest level of aggregation.  Thus, parameters at higher levels of aggregation can be obtained from the lowest 

level parameter estimates which serve as building blocks.  It should also be noted that, typically in practice, 

the joint inclusion probabilities (πi(jk)) of units j and k in stratum i are not available and therefore, survey 

weighted EFs can’t be constructed if they involve cross-product terms, e.g., if they involve double sums 

within a stratum i.  It is, therefore, desirable to specify the model (2.1) so that the error term iε ’s are i.i.d. 

which, in turn, gives rise to single sums within strata for survey weighting. 
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Now, the vector ϕ of EFs ( which involves data and parameters) serves as the condensed input data which 

after collapsing, if necessary, gives rise to an approximate Gaussian likelihood, L( *y |β, η, ⋅) where *y  

denotes the implicit condensing of information in y via φ .  Thus, for the unit-level HB analysis, the original 

likelihood L(y|⋅) (which would have been based on the ignorable design assumption) is replaced by the 

estimating function based Gaussian likelihood (EFGL), L( *y |⋅) which does not assume ignorability of the 

design. 

 

5.  PROPOSED METHOD (EFGL) 

 

We shall describe the proposed method of estimating function-based Gaussian likelihood (EFGL) in terms of 

the model (2.1).  Suppose, the HB-framework at the census-level is defined as follows: 

 

( )
( ) ( )
( ) ( )

0

2 2

2

2 2 2
0

| , , ~ ,

~ 0, , ~

~ 2, | 2 , ~ 0, .

ij ij i

p
i iid

y N x

N U R

IG U

ε ε

η

η η ε

β η σ β η σ

η σ β

σ ν σ σ

′ +

∞

        (5.1)                           

Here an attempt is made to specify the priors to make them as noninformative as possible, and thus making 

the HB framework as objective as possible.  Thus, the p-vector β of regression coefficients is assumed to have 

an improper uniform prior on the p-dimensional Euclidean space.  However, this does not affect the 

propreitory of the posterior of β .  For variance component 2
ησ , choice of the inverse Gamma as prior is 

computationally convenient because of its conjugate nature, and we can choose the shape parameter ( )0 2ν  

and the scale parameter ( )0

2 2ησ  as very small positive numbers to make it nearly noninformative.  The prior 

for 2
εσ , however, is improper like that of the mean parameter β, because in EFGL, as will be seen later, we 

introduce a separate EF, 2 ( )σ εϕ , for 2
εσ  which treats 2

εσ  as a mean parameter.  It turns out as expected and as 

in the case of  FH that 2
εσ  is not functionally part of the V-C matrix  φΣ  of ϕ when a suitable design-based 

estimate of ϕΣ  is substituted.  So we need to add an extra EF if the estimation of 2
εσ  is also of interest.  It 

may be noted that there is quite a bit of flexibility in the EF framework in that all the pieces of information 

deemed important can be incorporated by augmenting  the vector ϕ. 

 

Now, the EFGL method will be defined for Scenario I in which small areas are strata.  The EFs ( )iηϕ  and βϕ  

were defined earlier by (4.1).  Further suppose, 
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 ( ) ( ) ( )( ) ( ) ( ) ( )~ 0, , ~ 0,  and , .i approx i approx i iN V N V Cov Cη η β β β η βηϕ ϕ ϕ ϕ =  (5.2) 

Next define 

 ( ) ( ) ( ),i i i i i ia a Cβ β η βη ηϕ ϕ ϕ νΣ= − =%  

 

which implies that βϕ%  is uncorrelated with ( )iηϕ ’s.  It should be remarked that if the model (2.1) has an 

intercept β0, then 0 ( )iiβ ηϕ ϕ=∑  implying that 0 0βϕ =% .  We, therefore, drop one element from βϕ  

corresponding to β0.  However, we shall continue to use βϕ  to denote the reduced vector of dimension 1p − .  

Further, since  

   
 

                                  ( ) ( )1
(1) ( ), , .. .MCov V V C V C V diag V Vβ β β βη η βη η η ηϕ %% − ′≡ = − =                               (5.3)  

We have 

 ( ) ( ) ( )1, ~ 0, ,  blockdiag ,approx M pN V V V Vη β ϕ ϕ η βϕ ϕ ϕ % % %% % + −
′= =  (5.4) 

and the EFG log-likelihood is given by 
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                    (5.5) 

 

In the above EFGL, the covariance matrix Vϕ%  is design-based. This matrix may, in general, depend on 

unknown parameters which can be evaluated at their current values in the MCMC samples.  It may be noted 

that there is, in fact, a second component involving 2
εσ  when the V-C matrix of ϕ%  is computed under joint 

design-model randomization.  However, it is negligible in comparison to the first term, Vϕ% , under the usual 

assumption of ni<<Ni.  It should also be emphasized that, in practice, some collapsing of ( )iηϕ ’s may often be 

required because the corresponding ni’s (which are random under Scenario II) may be small.  We may need 

this collapsing to improve the Gaussian approximation, as well as  to improve the precision of  the estimate 

Vϕ% .  The effect of EF-collapsing on ηi-estimates is that all the prior estimates of iθ ’s ( )i xi iAθ β η′= +  that are 

part of a given collapsed EF, are shrunk toward the direct estimate of the corresponding collapsed small area.  

It is, therefore, important to  choose EF-collapsing partners carefully so that they have similar ηi’s both in 

magnitude and sign.  To this end, one can make a decision based on substantive considerations.  However, in 

practice, as a yardstick one can use (0)
,ˆi HBη  obtained under the ignorability assumption.  Once it is decided 
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which ηi’s would be used in EF-collapsing, one can construct a new census EF under the assumption of 

common ηi’s for this set, and then employ survey weighting to get the appropriate collapsed EF. 

 

If estimation of 2
εσ  is also of interest, we add an extra EF as mentioned earlier.  It is again motivated by 

census EF, and is given by 

 ( )( ) ( )2 2

2 2
( ) ( )~ 0, .ij ij i ij approxi j

y x w N Vεσ ε σ εϕ β η σ′= − − −∑ ∑  (5.6) 

Note that in FH, although 2
εσ  is not made explicitly part of the model, it could be done so by taking 

expectation of the design-based variance V.  However, as mentioned earlier, using aggregate-level data ,î dirθ , 

it would be difficult to discriminate very well between the two variance components 2
ησ  and 2

εσ . 

 

With the specification of EFGL, estimation of parameters ( )2 2, , ,η εη β σ σ  can proceed in the HB setup using 

MCMC steps.  The next section gives details of full conditional posterior distributions needed for MCMC.  

Although so far, we have considered only Scenario I, the case of Scenario II is somewhat analogous.  The 

main difference is that the V-C matrix of ϕη is no longer diagonal, and so the form of the EFGL is not as 

simple.  However, full conditional posterior distributions (Section 6), can be derived easily by first 

orthogonalizing ϕβ with respect to ϕη, and then for each i, orthogonalizing ( )iηϕ  with all other ( )iηϕ ′ , i i′ ≠ . 

 

6.  MCMC FOR THE PROPOSED HB-SAE 

 

For the Scenario I, the MCMC steps for finding full conditionals can be defined as follows.  It is assumed that 

the regularity conditions for the convergence of the MCMC steps toward a stationary distribution  hold. 

 

Step I.  [ ]| *,yβ η  

 

We note that under the vague uniform prior for β, the posterior of β is simply proportional to the likelihood, 

and is given by 

[ ] 2 1
( ) ( )1

1log | .
2

M
i ii

const Vη η β β ββ ϕ ν ϕ ϕ−
=

⎡ ⎤′⋅ = − +⎢ ⎥⎣ ⎦∑ %% %    (6.1) 

Since the kernel of the log-likelihood involves first and second powers of β, one can complete after some 

algebra the quadratic form in β.  This implies that [β|⋅] is exact Gaussian with mean and V-C matrix given 



 58

respectively by the mode and curvature (at mode of the above kernel function if it depends on β ).  Thus, 

[ ] 1
1 mode ( )

ˆ| *, , ,py N ψ ββ η β Σ−
− ⎡ ⎤= ⎣ ⎦    (6.2) 

where modeβ̂  solves the estimating equation 0βψ = , 

( ) ( ) ( ) ( ) 1
( ) ( )1

log * , .
M

i i w ii
L y x V X WX Vβ η η β βψ β β η ϕ ϕ−

+=
′= ∂ ∂ = +∑ % % % %  (6.3) 

where i i wi
X WX X WX a x +′ ′ ′≡ −∑% % , i w ij iji

x x w+ =∑ , and 'ij ij ijX WX x x w′ = ∑∑ . It is seen that similar to 

generalized least squares, mod
ˆ

eβ   can be obtained in a closed form.  The V-C of βψ  is easily obtained as 

1
( ) ( )1

( ) ( )
M

i w i w ii
E x x V X WX V X WXβ

ψ β η β
ψ

βΣ −
+ +=

∂⎡ ⎤ ′ ′ ′= − = +⎢ ⎥∂⎣ ⎦ ∑ % % % % %  (6.4) 

 

Step II.  2| , , *, , , 1, ...,i i y i i i Mηη η β σ′⎡ ⎤′ ≠ =⎣ ⎦  

 

Since the posterior [ηi|⋅] is proportional to the product of the likelihood and the prior, we have 

[ ] 2 1 2 2
( ) ( )1

1log | . .
2

M
i i i ii

const Vη η β β β ηη ϕ ν ϕ ϕ η σ−
=

⎡ ⎤′⋅ = − + +⎢ ⎥⎣ ⎦∑ %% %  (6.5) 

As in Step I, the kernel on the right hand side of (6.5) involves first and second powers of ηi, and one can 

complete the square in ηi.  Therefore, [ηi|⋅] is also exact Gaussian with mean and variance given by the mode 

and curvature.  That is, 

[ ] ( )
2

i ,mode ( )ˆ| ,i iN ψ ηη η σ −⎡ ⎤⋅ = ⎣ ⎦   (6.6) 

where 

( ) [ ]
,mode ( )

1 2
( ) ( ) ( ) ( )

ˆ  solves 0,

log | .

i i

i i i i i i i w iw x V
η

η η η η β β η

η ψ

ψ η ϕ ν ϕ η σ−
+ +

=

′= ∂ ∂ ⋅ = + −%% %
 (6.7) 

where i w i w i ix x a w+ + += −% . Again as in the case of β, ,modeˆiη  has a closed form.  The variance ( )
2

( )iψ ησ  is 

obtained as 

( ) ( )( )2 2 1 2
( ) ( ) ( )( ) i i i i i w i wi E w V x V xη η η β ηψ ησ ψ σ− −

+ + +′= − ∂ ∂ = + +%% %  (6.8) 

 

It is interesting to note that ( )iηψ  and ( )
2

( )iψ ησ  coincide with the usual BLUP theory when the design is 

ignorable and wij = w (a constant).  To see this, note that under the ignorality assumption, 
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( )2 2 2 2 2 2
( ) ( ) ,i i i ij ij ij ij ij ij ij ij iji j j j j j

a C V Cov x e w e w w x w wβη η ε ε εσ σ σ= = =∑ ∑ ∑ ∑ ∑ ∑ , (6.9) 

where ij ij ij ie y x β η′= − − .  Thus, assuming wij = w, we have i ij ij
a x n=∑  and 0i w i ix a w+ +− = .  Also, 

2 2 2 2 2
( )i i i ij ij

w w w nη ε εν σ σ+ += =∑   (6.10) 

 

The reduced forms of ( )iηψ  and ( )
2

( )iψ ησ  are 2 2
( )i ij ij

eη ε ηψ σ η σ= −∑ , and 

( )

2 2
2 2 2

( ) 2 21 i
ii

i

n
n

n
η ε

ε ηψ η
η ε

σ σ
σ σ σ

σ σ

+
= + =   (6.11) 

which implies that 

( )
( )

1 2

,BLUP 2 2 2 2 2
1ˆ

ij ijji
i ij y ij

i

y xn
y x n

n
η

ε η ε η ε

β σ
η β

σ σ σ σ σ

− ′−⎛ ⎞
′⎜ ⎟= + = −

⎜ ⎟ +⎝ ⎠

∑
∑  (6.12a) 

 

and 

( ) ( ) ( )
2 2

2 22
,EFGL ,BLUP( ) 2 2

ˆ ˆi
i i i ii

i

n
E E

n
η ε

ψ η
η ε

σ σ
η η σ η η

σ σ
−− = = = −

+
 (6.12b) 

 

Step III.  2 |ησ η⎡ ⎤
⎣ ⎦  

 

In view of the conjugate nature of the prior, the conditional posterior also has the inverse Gamma distribution, 

and is given by 

( ) ( )0

2 2 2
0| 2, 2

M
ii

IG Mη ησ η ν σ η⎡ ⎤⎡ ⎤ = + +⎢ ⎥⎣ ⎦ ⎣ ⎦∑   (6.13) 

which implies that the conditional posterior mean of 2
ησ , 

( ) ( )( ) ( )
0

2 2 2
0 0| 2 2iE M M Mη ησ η η ν σ νΣ⎡ ⎤ = + − + −⎣ ⎦   (6.14) 

It follows that the unconditional posterior mean of 2
ησ , i.e. 2 |E yησ⎡ ⎤

⎣ ⎦%  is obtained by the average of MCMC 

realizations after convergence.  This posterior mean is known to be approximately equal to the REML 

estimator for large M, see Kass and Steffey (1986), and Singh, Stukel, and Pfeffermann (1996). 

 

Next,  if 2
εσ  also needs to be estimated, then logL gets modified due to inclusion of the EF 2 ( )σ εϕ .  It is easily 
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seen that in Step III, [ ]|iη ⋅  can be obtained using the Metropolis-Hastings (MH)-step with a proposal 

distribution given by the earlier closed form of [ ]|iη ⋅  where 2
εσ  is not part of the likelihood. 

 

Now, for estimating 2
εσ , we add a fourth step. 

 

Step IV. 2 |εσ⎡ ⎤⋅⎣ ⎦  

 

It is similar to [ ]|β ⋅  because 2
εσ  is treated like a mean parameter via EF.  So, 

( ) { }2 2
2 2 2

, mode ( ) 0
ˆ| ,Const N V w I

ε
ε ε σ ε σ

σ σ ++ >
⎡ ⎤⋅ = ×⎣ ⎦                         (6.15) 

where ( )22
, modeˆ iM n

ij ij i iji j
y x w wεσ β η ++′= − −∑ ∑ , and iji j

w w++ =∑ ∑  is typically constant in practice due 

to weight calibration. 

 

Before moving to the next section, we remark that in the HB framework, to get a reasonable shrinkage of the 

prior estimates of ηi toward the direct estimates, we need most of the ηi’s manifested in the sample.  If the 

sampling design is such that this is not the case (e.g., if ηi’s correspond to random PSU effect), then we are 

faced with an undesirable scenario in which there is hardly any shrinkage of prior estimates of ηi’s.  It is 

interesting to note an analogy of the above situation with the model-based estimation in survey sampling 

under the prediction approach, where the model-based predictor of the unobserved part of the population is 

simply given by the synthetic estimator. 

 

7. SIMULATION EXPERIMENT 

 

We design our study along the lines of Pfeffermann et al. (1998). Consider a universe of 1, ,i ML= strata 

(small areas) where 100M =  and let iN  denote the number of population members in stratum- i . In this 

simulation experiment, we set *
0 (1 exp( ))i iN N u= +  where 0N  is a constant and *

iu  is obtained by truncating 

~ (0, 0.2)iu N  at 0.2± . For simplicity, we consider a single covariate super-population linear mixed 

model 0 1ij ij i ijy xβ β η ε= + + +  where 0 0.5β = , 1 1β = , ~ (0, 0.2)i Nη , ~ (0, 4)ij Nε , and 1, , ij NL= . The 

covariate ij i ijx υ δ= +  where ~ (0, 0.1)i Nυ  and ~ (0, 1)ij Nδ .  We generate 150K = population level data sets 

with common ijx  and iN  where iN ’s are generated using 0N =3000. Note that the substratum sizes vary over 
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the 150 populations. We selected two samples from each of these populations. The first sample was selected 

in such a way that the design was ignorable. The second sample was selected so that the design was 

nonignorable.  

 

To select a sample with an ignorable design, we further stratify the stratum- i  population into two substrata 

iΩ +  with 0ijx > and iΩ −  with 0ijx ≤  . To select a sample with nonignorable design, we  stratify the stratum- i  

population into two substrata iΩ +  with 0ijε > and iΩ −  with 0ijε ≤ . Let iN + , iN −  denote the sizes of these 

substrata and in + , in − denote the sizes of the simple random samples selected without replacement from these 

strata, respectively. Note that the substratum sizes vary across populations. Let 
100

1
i

i
N N

=

= ∑ and 

100

1
i

i
n n

=

= ∑ where i i in n n− += + . For 150 populations, we generate the corresponding 150 samples. In our 

simulation experiment, 628897N = , 60 and 20i in n− += = so that we have  a sample of size 80 for each small 

area with a total sample of size 8000. 

 

In our simulation study, we compare EFGL, FH, unweighted HB, and PHB (Pseudo-hierarachical Bayes 

method of You and Rao, 2003) solutions by comparing average posterior means and standard deviations of 

the parameters of interest. We also compare average 95% prediction interval coverage probabilities as well as 

the average lengths of 95% prediction intervals. These averages are taken over 150 replications corresponding 

to populations with varying iη 's. The comparisons are made for samples generated under ignorable and 

nonignorable designs. For the FH method, we used a HB-version obtained from EFGL by transforming the 

unit-level auxiliary information to the aggregate-level, i.e., replacing ijx  with 
1

( )
iN

i ij i
j

X x N
=

= ÷∑ . For the PHB 

method, we used version 2 of You and Rao (2003). 

 

For each sample ( 1, ,150s L= ), using Gibbs sampling technique, we generate 10,000 MCMC samples for 

each of the model parameters, namely 2
0 1 1 M, , , ,  and  ηβ β η η σK . These MCMC samples are tested for 

convergence criterion using CODA (Convergence Output Data Analysis software). First 1000 MCMC 

samples are deleted for “burn-in” period and from the rest of the 9000 MCMC samples we selected every 

ninth sample to minimize any auto-correlation among samples, yielding a final MCMC sample of size 1000.  

 

Let 2
0 1( , , , )sc sc sc isc scηθ β β η σ= denote the parameter values from the c -th MCMC cycle corresponding to the s -
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th sample. In Table 1, the average posterior mean of θ  is defined as 
150 1000

1 1

( ) (1000 150)sc
s c

θ
= =

÷ ×∑∑  and the average 

posterior standard deviation of each element of  scθ  is defined as the square root of 

150 1000
2

1 1

( ( ) ) (1000 150)sc s
s c

θ θ
= =

− ÷ ×∑∑  where
1000

1

( ) 1000s sc
c

θ θ
=

= ÷∑ . Let 0 1isc sc i sc iscXβ β ηΘ = + +  denotes the small area 

estimate from the s -th sample for the i -th area using the c -th MCMC cycle where
1

( )
iN

i ij i
j

X x N
=

= ÷∑ . Also, 

define *
0 1is i isXβ β ηΘ = + +  where isη  is the true value of iη  for the s -th population. Let isL  and isU  denote 

2.5 and 97.5 percentiles of the posterior distribution of isΘ obtained from 1000 MCMC samples of iscΘ . 

Define 
*1 if [ , ]

   
0 .

is is is
is

L U
otherwise

ψ
Θ⎧ ∈⎪= ⎨

⎪⎩
 

The coverage probability distribution characteristics given in Tables 2 are obtained from the distribution of 

100 area- i specific values of 
150

1

( ) 150is
s
ψ

=

÷∑ .  

 

8. SIMULATION RESULTS 

 

Tables 1 and 2 summarize the simulation results obtained from the ignorable sample design, whereas Tables 3 

and 4 present the corresponding results for the nonignorable samples.   In Table 1, average posterior means 

and standard deviations for the EFGL method are compared with solutions from a HB version of the FH 

model, PHB and unweighted solutions for the ignorable sample design.  Since the model holds in the sample, 

the unweighted solution is expected to be the most efficient solution. The average posterior means for all four 

methods are very close to each other. The average posterior standard deviation of 1β  for the FH model is 

approximately 13 times larger than the other methods. This is due to the fact that the FH solution uses 

aggregate-level covariate information. However, the average posterior standard deviations of 0β  and 2
ησ    for 

all the solutions are very close to each other. 

  

In Table 2, 95% prediction interval coverage probabilities for the EFGL solution are compared with the FH, 

PHB, and unweighted HB solutions coverage probabilities. The coverage probabilities for all solutions are 

very close. However, the prediction intervals for the FH solution are 16% wider than the EFGL solution, 

which is expected, since the EFGL solution utilizes unit-level covariate information whereas the FH solution 

uses aggregate-level covariate information.  The unweighted HB method, being the most efficient for the 
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ignorable sample design, results in prediction intervals that are approximately 10% shorter than the EFGL 

solution.  

 

For the nonignorable sample design, Table 3, shows that the average posterior mean for 0β  from the 

unweighted solution is heavily biased (0.1043 vs 0.5) due to the fact that we over- sample the iΩ −    substrata. 

On the other hand, the average posterior means for the FH, EFGL and PHB solutions are very close to each 

other. The average posterior standard deviations of 0β  and 2
ησ   for all four solutions are also close to each 

other whereas the average posterior standard deviation for 1β  from the EFGL, PHB and unweighted solutions 

are more than 12 times smaller than the solution from the FH model.  

 

From Table 4 (for the nonignorable sample design), we see that 95% coverage probabilities for the EFGL 

solution and FH solution are very close to each other whereas the coverage probabilities for the PHB solution 

are approaching 1 and the coverage probabilities for unweighted solution are close to 0. The unweighted 

method performed very poorly due to the heavily biased estimate of 0β .  It suggests that for our nonignorable 

samples, the PHB solution substantially overestimates the SAE posterior variances. The prediction intervals 

for the FH, PHB, and unweighted solutions are respectively 86%, 52%, and 32% wider than the EFGL 

solution. The inefficiency in the FH solution is expected for the reasons mentioned earlier, since the EFGL 

solution utilizes unit-level covariate information whereas the FH solution uses aggregate-level covariate 

information.   

 

 

9.  MIXED NONLINEAR MODELS:  LOGISTIC CASE 

 

The method of EFGL introduced in Section 5 for finding HB-SAE in the context of mixed linear models can 

be easily applied to mixed nonlinear models, the only difference being that full conditional posteriors of β and 

η have no longer analytic solutions.  Therefore, as expected, the method gets more computer intensive.  To 

illustrate the ideas, we consider a simpler version of the mixed logistic model (1.1) given by: 

( )
( ) ( ) ( )0

2 2 2
0

, ~ Bernoulli

log

~ 0, , ~ , ~ 2, 2 .

ij ij ij ij

ij ij i

p
i iid

y y

it x

N U R IGη η η

µ ε

µ β η

η σ β σ ν σ

= +

′= +  (7.1) 
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The EFs in this case remain similar to the linear case except that the elementary zero functions (or the 

residuals) ij ijy µ− , are complex due to the nonlinear form of µij’s.  Observe that EFs continue to be simple 

linear functions of elementary zero functions, and hence they behave well in terms of Gaussian 

approximations.  The EFs for the logistic case under Scenario I are given by 

 

( ) ( )
( ) ( )

( ) ( )1
~ 0,

~ 0,

in
i ij ij ij approx ij

ij ij ij ij approxi j

y w N V

x y w N V

η η

β β

ϕ µ

ϕ µ

=
= −

= −

∑
∑ ∑

  (7.2) 

 

We can orthogonalize βϕ  with respect to ϕη(i)’s as before.  Also with the intercept model, βϕ  corresponding 

to the intercept should be dropped because of its linear dependence on ϕη(i)’s.  Now, the likelihood, 

( )* | ,L y β η  can be approximately specified as before, but the MCMC steps are modified as follows: 

 

Step I.  [ ]| *,yβ η  

 

Since the sample is typically very large, the full conditional posterior  can be well approximated by 

[ ] ( )1
mode ( )

ˆ| *, ~ ,y N ψ ββ η β Σ−   (7.3) 

where modeβ̂  solves ( )( )( )0, Eβ ψ β βψ β ψΣ= = − ∂ ∂ , 

( ) ( )

( ) ( )( ) 1
( ) ( )1 1

log * | ,

1 1 (1 )iM n
i ij ij ij ij i ij ij ij ij ij i i i ij iji j i j i

L y

x w V x x w a x w V

β

η η β β

ψ β β η

ϕ µ µ µ µ µ µ ϕ−
= =

= ∂ ∂

′= − − − − −∑ ∑ ∑ ∑ ∑ % %
  (7.4) 

Note that unlike the linear case, modeβ̂  does not have an analytic form.  Also note that instead of the 

approximate posterior (7.3), one can get realizations from an exact posterior by using the MH step within 

MCMC in which (7.3) can be used as a proposal. 

 

Step II.  2| , , *, , 1, ..., .i i y i Mηη η β σ′⎡ ⎤ =⎣ ⎦  

As mentioned earlier, this again does not have an analytic solution.  We could use MH with mle/prior for the 

proposed distribution.  In other words, solve 2
( ) 0i iη ηψ σ η−− =  to get ,mle-adjˆiη , where 

( ) ( )( ) log * | ,i i L yηψ η β η= ∂ ∂ , and use ( )( ) 12 2
,mle-adj ( )ˆ ,i iN ηψ ηη σ σ

−−⎛ ⎞+⎜ ⎟
⎝ ⎠

 as the proposal distribution where 
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( )
2

( )( ) i ii E ηψ ησ ψ η⎡ ⎤= − ∂ ∂⎣ ⎦ . 

 

Step III.  2 |ησ η⎡ ⎤
⎣ ⎦  

 

We get the same result as in the linear case.  Note that Step IV for 2 |εσ⎡ ⎤⋅⎣ ⎦  is not needed because 2
εσ  is a 

known function of µij in the logistic case. 

 

We now consider the work of Folsom et al. (1999) mentioned earlier in Sections 1 and 2 which is related to 

the proposed EFGL method.  For the logistic model, they constructed a pseudo log-likelihood ( from the 

Bernoulli likelihood at the census-level) involving design weights.  For this purpose, survey weights were 

scaled such that they sum to the effective sample size obtained by using the design effect within each area i. 

The design effect was, however, based only on the effect of unequal weighting under the working assumption 

of ignorability of the design. In other words, effects of stratification, clustering, and multistage designs were 

ignored. 

 

Under their pseudo-likelihood approach, the score function for ηi involves ϕη(i) multiplied by a scale 

adjustment for weights.  This pseudo score function in conjunction with the prior information gives the 

appropriate prior-adjusted pseudo-mle for random effects.  This prior-adjusted pseodo-mle along with its 

variance can be used for defining a Gaussian proposal distribution for the MH step in finding the full 

conditional posterior of iη . In the case of β , the actual pseudo score function obtained from the pseudo 

likelihood was, however,  not used, but a somewhat modified  pseudo score function, namely βφ obtained 

from the census likelihood was used as it has the appealing property of self-calibration or benchmarking 

explained later on.  Note that the actual pseudo score function for β  is not proportional to βφ   because of 

weight scaling.  However, pseudo mleβ̂  obtained by solving 0βϕ = , and the associated  sandwich V-C matrix 

( ) ( ) 11
β φ βϕ β ϕ βΣ

−− ′′∂ ∂ ∂ ∂  used respectively as the mode and curvature of a Gaussian distribution is likely 

to be close to the conditional posterior based on the actual pseudo-score function for β.  Here the V-C matrix 

Σϕ is computed under the working assumption of ignorable designs, and thus reflects only unequal weighting 

effect.  It may be noted that use of the sandwich V-C (and not the pseudo information ) matrix is appropriate 

because the likelihood is pseudo. 
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For computing, 2[ | ]ησ ⋅ , the distribution of Step III of EFGL was used.  Thus, the above pseudo-likelihood 

approach has some similarity with the proposed EFGL.  The main differences are that the likelihood is pseudo 

which need not be valid, and the working assumption of ignorable sample design may not be reasonable.  In 

EFGL, the likelihood is based on EFs and approximated by a valid Gaussian likelihood where the covariance 

matrix takes full account of the design. However, in the NHSDA application, it was observed that the MCMC 

method for the pseudo-likelihood approach did converge and  provided good results.  Also, it can be shown 

that HB-SAE estimates based on the pseudo-likelihood approach have the desirable property of approximate 

self-calibration or benchmarking because SAEs obtained directly from pseudo score functions are very similar 

for large samples to the direct SAEs which  are,of course, design-consistent.  Thus, SAEs for big states will be 

approximately equivalent to the direct estimates.  Also, aggregates of SAE estimates are nearly calibrated to 

the national direct estimates.  By contrast, estimates resulting from the method of  EFGL, although design-

consistent,  need to be modified to achieve benchmarking to direct estimates for areas with very large 

samples, see e.g., Singh and Folsom (2001). 

 

10. CONCLUDING REMARKS 

 

The method of EFGL was developed to exploit unit-level information, to take full account of the survey 

design, and  to have a valid (approximate) likelihood for the HB-SAE methodology for generalized linear 

mixed models.  It generalizes the aggregate-level model of FH (1979), and the pseudo-likelihood approach of 

Folsom et al. (1999).  There are essentially two main ideas in EFGL, namely, the data aggregation  via EFs 

and EF-collapsing.  The main reason for EF-collapsing is to improve Gaussian approximation, and the 

secondary purpose is to improve the variance estimate’s precision.  In practice, it may be preferable to use 

separate modeling to make variance estimates more stable. However, even if variance estimates are not 

precise, it is often of interest, in practice, to see how much variance reduction can be realized through SAE 

modeling. 

 

The idea of data aggregation in EFGL is somewhat similar to that of FH except it  tries to take advantage of 

the unit-level information as much as possible.  Since EFGL uses more information than FH, the resulting 

estimates are expected to be more efficient than those from FH.  In particular, for the case of simple linear 

mixed models (2.1) with known variance components, it can be easily shown analytically that  precision of 

the estimates of fixed effects ( β ) can be improved substantially in the case of unit-level models if the 

covariates ( ijx ) have sufficient variability within areas.  There is also some gain in efficiency of random effect 
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( iη ’s) estimates.  However, if iη ’s are also defined as coefficients of suitable covariates ( ijz ’s) as in the case 

of random regression coefficients, then high efficiency gains in estimating random effects can also be realized 

if there is sufficient variability in ijz ’s within areas. 

 

We remark that the problem of HB-SAE arose in the context of NHSDA-SAE application where it was 

desired to fit a mixed logistic linear model.  This was a daunting SAE application task with a very large data 

set and many covariates which was addressed by Folsom et al. (1999).  Note that it was not possible to use 

any existing software  for this task . 

 

The ideas underlying the proposed method of EFGL are quite general, and the method is applicable to general 

nonlinear mixed models for survey data.  However, it does have some limitations which the user should keep 

in mind: (i) Some loss of efficiency is inevitable due to data aggregation, and EF-collapsing.  This is the price 

we pay for not having enough information about the likelihood of the sampled data, and by not being able to 

ignore the sample design. (ii)  The EF-collapsing may be needed for the Gaussian approximation.  In practice, 

it is better to avoid it if possible as it doesn’t distinguish much between the areas involved in collapsing.  At 

the design stage, one can take measures to ensure a sufficient number of observation in each small area in 

order to avoid EF-collapsing.  It may be noted that one only needs a modest size of the realized sample in 

small areas for Gaussian approximation of EFs.  However, SAEs are still needed for precise estimation. 

 

Finally we mention an interesting problem (not on SAE though) considered by Pfeffermann et al. (1998) on 

multi-level modeling (such as the mixed linear model (2.1)) for survey data for estimating fixed effects ( β ) 

and variance components ( 2 2,η εσ σ ).  Here  we don’t have the problem of small area estimation, and the 

random effects iη are defined at the PSU-level which is lower than the area level.  Under a frequentist 

approach, they proposed a probability-weighted iterative GLS for estimating all the fixed parameters which 

requires knowledge of both first-stage ( iπ ) and second stage ( j iπ ) selection probabilities separately, and a 

large  number of PSUs as well as a large number of second stage units within each PSU to ensure consistency 

of the variance component estimates.  In practice, since it is not realistic to assume large second stage sample 

sizes, the authors proposed scaling the weights as an option to reduce small sample bias.  For a Bayesian 

approach as an alternative, if second order inclusion probabilities were known, it would be fairly 

straightforward to construct EFs for  2 2, ,η εβ σ σ , and then the method of EFGL could be used to produce HB-

SAE  for these parameters.  However, if only first order inclusion probabilities are known, as is often the case, 
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we need to modify the EFGL method.  In its present form it doesn’t seem applicable, because most PSUs need 

to be manifested in order to have a reasonable shrinkage as mentioned earlier in Section 6. A way to modify 

EFGL would be to include an additional EF of the form ( 2 2
1 1

/1i s i i i
M M
i i

πη η∈= =
−∑ ∑ ) to account for the first 

stage of selection of PSU-level random effects in estimating 2
ησ , and to allow for collapsing of PSUs, if 

necessary, for Gaussian approximation of EFs. Note that under the usual with-replacement assumption of 

PSUs, design-based variances of PSU-level EFs can be estimated within each design stratum provided there 

are at least two PSUs per stratum. 
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Table 1: Average Posterior Mean and Standard Deviation for Model Parameters: Ignorable Sample 
Design  
 

Average Posterior Mean Average Posterior 
Standard Deviation Parameter 

(True 
Value) FH 

 
EFGL 

 
PHB Unweighted FH 

 
EFGL 

 
PHB Unweighted 

0β  (0.5) 0.5009 0.5020 0.5020 0.5024 0.0473 0.0461 0.0482 0.0461 
1β  (1.0) 0.9946 0.9988 0.9989 0.9983 0.1650 0.0129 0.0131 0.0121 
2
ησ (0.2) 0.1970 0.1974 0.1981 0.1981 0.0318 0.0309 0.0303 0.0303 
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Table 2:  95% Coverage Probability and Ratio of Prediction Interval (PI) Widths: Ignorable 
Sample Design 
 

Coverage Probability Ratio of Average PI Widths Percentiles 
and Means 
over Small 

Areas 
FH EFGL PHB Unweighted FH/EFGL PHB/EFGL Unweighted/EFGL

95% 0.973 0.970 0.973 0.980 1.19 1.03 1.00 
75% 0.953 0.953 0.960 0.967 1.17 1.02 0.97 
50% 0.940 0.940 0.953 0.953 1.16 1.01 0.91 
Mean 0.942 0.941 0.950 0.950 1.16 1.01 0.89 
25% 0.930 0.933 0.940 0.937 1.15 1.00 0.83 
5% 0.913 0.907 0.913 0.920 1.14 1.00 0.75 

 
 
Table 3: Average Posterior Mean and Standard Deviation for Model Parameters: Nonignorable 
Sample Design 

 

 
 

Table 4:  95% Coverage Probability and Ratio of Prediction Interval (PI) Widths: Nonignorable 
Sample Design 
 

Coverage Probability Ratio of Average PI Widths Percentiles 
and Means 
over Small 

Areas 
FH EFGL PHB Unweighted FH/EFGL PHB/EFGL Unweighted/EFGL

95% 0.973 0.970 1.000 0.007 1.91 1.54 1.35 
75% 0.953 0.953 1.000 0.000 1.88 1.53 1.33 
50% 0.940 0.933 0.993 0.000 1.86 1.52 1.32 
Mean 0.941 0.933 0.995 0.001 1.86 1.52 1.32 
25% 0.927 0.913 0.993 0.000 1.84 1.50 1.31 
5% 0.910 0.897 0.987 0.000 1.82 1.49 1.30 

 

Average Posterior Mean Average Posterior                      
Standard Deviation Parameter 

(True 
Value) FH 

 
EFGL 

 
PHB Unweighted FH 

 
EFGL 

 
PHB Unweighted 

0β (0.5) 0.5043 0.5029 0.5029 0.1043 0.0472 0.0450 0.045
9 0.0448 

1β (1.0) 1.0014 1.0004 1.0006 0.9999 0.1638 0.0131 0.012
1 0.0103 

2
ησ (0.2) 0.1972 0.1977 0.1909 0.1909 0.0319 0.0294 0.029

0 0.0290 



 72

 
Discussion of 

“Estimating Function Based Approach to Hierarchical 
Bayes Small Area Estimation for Survey Data” 

 
Phillip S. Kott 

National Agricultural Statistics Service 
 
 

Introduction 
 

In their intriguing paper, Singh, Folsom, and Vaish develop an Estimating-Function Hierarchical 
Bayesian (EFHB) methodology to replace the standard Fay-Herriot (F-H) model for small-domain 
estimation.  I will discuss two limitations of the F-H model overcome by their EFHB methodology 
and two other problems that are not.  This leads to the obvious question:  Why combine estimating 
functions and hierarchical Bayesian models in the way the authors choose? 
 

The Fay-Herriot Model 
 
Suppose we have M small domain totals (or means) satisfying the model:  
 
Yi+  =  Xi+β +  ηi ,       ηi ~ N(0, ση2). 
 
Suppose further that each of the component of the row vector Xi+ is known, but each of the Yi+ has a 
randomization-based estimator: 
 
 yi+(RB) = Yi+ + di ,       di   ~   N(0, Vi) approximately. 
                                        
A better estimator for Yi+ is  
 
yi+(λ)    = (1 ! λ)yi+    +  λ Xi+ b,  
 
where b is an unbiased estimator for β, λ = vi /(vi + sη2) when M is large, vi is a randomization-based 
estimator for Vi , and sη2 is an estimator for ση2.  A nice property of yi+(λ) is that as the sample size 
within domain i increases, so that Vi (and vi) tends towards 0 under mild conditions,  yi+(λ) 
approaches yi+(RB).  Consequently, if yi+(RB) is randomization consistent (approaches Yi+ as the 
sample size within i grows arbitrarily large), then so is yi+(λ). 
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The Estimating-Function Hierarchical Bayesian Methodology 
 
Let j be a unit within area i.  The authors’ EFHB technology lets us expand the F-H area-level model 
to the unit-level: 
 
yij = xijβ + ηi + εij,   where    E(εij) = 0.   
 
The model holds for the population, but not necessarily for the sample.  In other words, the design 
may be informative.   In this, the authors part company from most of the small-domain literature. 
 
If Xi+ = 3j0U(i) xij   is known, and xij is not constant within each area, then the EFHB technology 
produces a better estimator than yi+(λ;F-H) under the model.   Moreover, as Vi (and vi) approaches 0, 
yi+(HB) approaches Yi+ 
 
In addition, the EFHB technology allows models of the form: 
 
yij = µ(Xiβ + ηi) + εij , 
 
where µ( . ) need not be the identity.  This is particularly helpful when yij is a 0/1 variable.  In that 
situation,  µ( . )  can be logistic.  Unfortunately, there is a limited ability to replace Xi+ with xij  
 
The EFHB methodology uses randomization-based estimators for Vi, but such estimators are 
notoriously error-prone when based on small samples.  Collapsing domains won’t help when the 
estimator, vi, is zero but Vi is positive. 
 
Another problem with the authors’ EFHB methodology is that it is not self-benchmarking.  A 
methodology having this property produces domain estimators satisfying 
 
   M 
   3   yi+   =  3 yi+(RB) = y++(RB) , 
  i=1 
 
where y++(RB) is model free yet has a small variance.  It should be noted that the standard F-H 
approach is likewise not self-benchmarking.  
 

Why Estimating Functions? 
 
Arguably the first model-assisted  paper (Godambe 1955) requires the estimator to be randomization 
unbiased.  The probability-weighted ratio (and regression) estimator can have good model-based 
properties but has a potential randomization bias.  The correct way, in my view, to deal with the 
randomization bias of the certain probability-weighted estimators is to change the requirement from 
randomization unbiasedness to randomization consistency  (Isaki and Fuller 1982), which assures 
that the estimator in question be close to what it estimates almost surely when the sample is large 
enough.  The wrong way is to observe that an  estimator like the probability-weighted ratio can be 
derived from the solution to an unbiased  estimating equation (e.g., Godambe 1960, Godambe & 
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Thompson, 1986).  This “wrong way” uncovered a technique that has found many practical uses, 
however.   It is a useful technique built on a dubious theory.   
 
Singh, Folsom, and Vaish use estimating functions (a mild generalization of estimating equations) to 
generate estimators that are randomization-consistent, but not self-benchmarking.  With an 
alternative approach, You and Rao (2003) use estimating functions to produce estimators that are 
both randomization-consistent and self-benchmarking. They do this by modeling the sampling 
variance under an ignorable model.  Unfortunately, they assume a linear µ( . ).  
 

My Bottom Line   
 
The less data we have the more we need models.   Models with pre-determined functional forms 
have more power than semi-parametric models.  Furthermore, hierarchical Bayesian models allow µ( 
. ) to be nonlinear.  
 
Combining estimating functions Bayesian models appear to give us the best of both worlds, the 
robustness of estimating functions and the power of Bayes.  The former’s reliance on the   
asymptotic normality of probability-weighted estimators, however, undercuts the advantage of a 
latter. We also need to ask whether sampling weights are needed because:  
 
1. The model is correct in the population but not necessarily correct in the sample OR 
2. The model may be wrong in both the sample and the population.  
 
By positing the first, which is what the authors do, Emodel ([yi+(RB) !Yi]2 | sample) cannot be estimated 
directly.  Instead, one invokes the equality,  
 
Emodel {Erand ([yi+(RB) !Yi]2)} = Erand {Emodel ([yi+(RB) !Yi]2 | sample)},  
 
and estimates the randomization variance for domain i, Vi = Erand ([yi+(RB) !Yi]2).  This is often not a 
trivial thing to do well even with largish samples.  In my view, it is much more sensible to accept the 
second position.  Using sampling weights provides some asymptotic protection against the model 
being wrong in the population itself.  Nevertheless, model-based parameters and predictors should 
be estimated as if the model were correct and the design noninformative.  One can then estimate 
Emodel ([yi+(RB) !Yi]2 | sample) = Emodel ([yi+(RB) !Yi]2) with relative ease, and the resulting estimator 
will usually have much more power than a randomization-based estimator for Vi.  This is the 
approach effectively taken by You and Rao.    
 
Singh, Folsom, and Vaish’s EFHB approach allows them to incorporate a nonlinear µ( . ) into 
their model.  I wonder if that is enough to justify their having to rely on estimated randomization 
variances and put up with the inconvenience of domain estimators that are not self-
benchmarking. 
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1. Introduction

Most large sample surveys conducted by agencies such as the U.S. Bureau of the Census pro-
vide accurate statistics at the national level. Many policymakers and researchers, however,
also want to obtain statistics for smaller domains such as states, counties, school districts,
or demographic subgroups of a population. These domains are called small areas—so called
because the sample size in the area or domain from the survey is small. The goal is to
estimate θi, the mean value (or other characteristic) of a variable of interest y in small area
i, for some or all of the small areas.

Small area estimates of income and poverty are employed in the allocation of more than eight
billion dollars each year in the U.S. In that setting, no single source of information currently
being collected is capable of producing reliable estimates of the number of poor people
under age 18 in each county, or the number of poor children in each school district. Thus,
the current practice to estimate poverty at the state level (see National Research Council,
2000, p. 49) uses auxiliary information from tax returns, food stamp programs, and the
decennial census to supplement the data from the Current Population Survey (CPS). The
model used is based on that in the pioneering paper by Fay and Herriot (1979). Let θi be
the proportion of school-age children who are poor in state i. The direct estimate ȳi of θi is
calculated using data exclusively from the CPS, and V̂ (ȳi) is an estimate of the variance of
ȳi. A regression model for predicting θi using auxiliary information is

θi = α0 +
k∑

j=1

αjxji + vi (1)

where the xji’s represent covariates for state i (e.g., x2i is the proportion of people receiving
food stamps in state i) and vi (assumed to follow a N(0, σ2

v) distribution) is the model error
for state i. The regression parameters and σ2

v may be estimated using maximum likelihood.
The predicted value from the regression equation for state i is combined with the direct
estimate ȳi from the CPS according to the relative amounts of information present in each
estimate:

θ̂i = γ̂iȳi + (1− γ̂i)(α̂0 +
k∑

j=1

α̂jxji), (2)

where γ̂i = σ̂2
v/[σ̂

2
v + V̂ (ȳi)]. If the direct estimate is precise for a state, i.e., V̂ (ȳi) is small,

then γ̂i is close to one and θ̂i relies mostly on the direct estimate. Conversely, if the CPS
contains little information about state i’s poverty rate, then γ̂i is close to zero and θ̂i relies
mostly on the predicted value from the regression. The estimator in (2) generally has smaller
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mean squared error (MSE) than the direct estimator ȳi because it uses information available
from other sources. In the extreme case where area i has no observations from the CPS and
hence ȳi cannot be calculated, the improvement in MSE is infinite.

Traditionally, as is done for state estimates of school-age poverty, small area estimation
relies on a model relating the responses of interest in the small areas to each other and to
covariates. The model allows the estimate of θi to “borrow strength” from other small areas
through random effects terms and regression parameters. Small area estimation models have
been used in many settings to obtain more accurate estimates for subpopulations without
additional cost for data collection. A thorough review of research in small area estimation
is given in Rao (2003).

As detailed in Rao (2003), two main types of models are used in small area estimation,
distinguished by the nature of the auxiliary information. The model described above for
estimating poverty rates is an example of an area-level model : ȳi, the estimate of θi from the
survey, is related to area-level covariates. In an area-level model, the auxiliary information
does not need to be known for individual persons in area i, since the covariates are summary
information for the small areas. In a unit-level model, the response of interest for each person
in area i is modeled as a function of covariates available for that person. A unit-level model
might, for example, model log(income for jth person in area i) using covariates of tax return
and food stamp data for that person. The unit-level model thus requires that the covariate
values are known (and can be linked to the income data) for the persons in the survey.

Both unit- and area-level models assume that the model covariates are measured without
error. In many situations, though, auxiliary information is available that can help in the
estimation, but that information is not exact. Auxiliary information may be available from
another survey, or from an administrative source in which imputation has been used to
fill in missing values. In both of these cases, the auxiliary information is measured with
error—sampling and nonsampling error for survey data, and imputation error for incomplete
administrative data. For example, the American Community Survey (ACS) will sample
about 3 million households each year. For most small areas, the ACS will give relatively
precise estimates of quantities it measures, and thus can be used as auxiliary information
for estimating small area characteristics on many topics. The ACS still contains sampling
error for many small areas, however, and that error should be included in standard errors
reported for the estimates.

For another example, the U.S. National Crime Victimization Survey (NCVS) provides re-
liable estimates of victimization rates for the country as a whole. If separate estimates of
victimization rates are desired for each state, however, some states have very small sample
sizes, and standard errors using a direct estimate are unacceptably large. The same problem
occurs when one desires to estimate characteristics of subgroups of the population such as
victims of domestic violence—the sample sizes of domestic violence victims are not suffi-
ciently large to give adequate precision for estimates of interest (Ybarra and Lohr, 2002).
The Uniform Crime Reports (UCR), which provides statistics compiled by the FBI from
law enforcement agencies, could be used as auxiliary information; Wiersema et al. (2000)
found high correlations between NCVS and UCR estimates of number of victimizations using
data from ten metropolitan statistical areas (MSAs). The UCR data, however, have many
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limitations. They only include crimes known to police; moreover, reporting is voluntary so
many agencies have missing data. Even when agencies do report the data, reporting is not
uniform. Maltz (1999) discussed the extent of missing data in the UCR, and described some
current imputation schemes. For the UCR to be used as auxiliary information to the NCVS,
imputation errors need to be incorporated into estimates of precision.

Many survey designs in the U.S. are now being integrated to allow combination of estimates.
The U.S. National Health Interview Survey (NHIS) and National Health and Nutrition Ex-
amination Survey (NHANES) currently share the same primary sampling units (psu’s): the
psu’s selected for NHIS are used as a sampling frame for NHANES. NHIS is a stratified
multistage probability sample of about 100,000 persons (40,000 households) per year. The
design is described in detail in Botman et al. (2000). NHANES conducts medical examina-
tions of participants, however, and the mobile examination unit can only visit 15 psu’s per
year (about 5000 persons), as opposed to 358 psu’s for NHIS. Because of the small sample
size, NHANES data are usually accumulated over time in order to produce estimates. The
small sample sizes also cause state and local estimates from NHANES to have low precision.
The NHIS data provide more precise estimates of quantities measured at some localities, but
the data come from an interview rather than an examination: For example, in NHANES,
prevalence of diabetes may be estimated using the results of the medical exams, while in
NHIS respondents are asked questions about health problems. We would expect, though,
that the questionnaire results would be highly correlated with the medical examination re-
sults, and thus that the NHIS would provide high-quality auxiliary information for use with
NHANES data for improved small area estimation.

The following situation is considered in this paper. Suppose there are t areas of interest (for
example, t = 50 if states are small areas). We are interested in a characteristic θi of area
i, for i = 1, . . . , t. We have data from the primary survey for some (or all) areas, and data
from an auxiliary survey for some (or all) areas. Often the characteristic of interest will be
a mean or proportion. For estimating state victimization rates, θi might be the proportion
of persons who are victims of violent crime in state i. The NCVS is considered the primary
survey, and the UCR can be used to provide auxiliary information (although with error).
The main questions to be considered for incorporating auxiliary information with error into
small area estimates are: (1) How should the information be used in a small area model?
and (2) How does the error in the auxiliary information affect the MSE of the small area
estimates?

In this paper, we summarize some of our recent research on combining information from
surveys to obtain more accurate estimates at the small area and national level. In Section 2,
we discuss unit-level models for combining information, and in Section 3 we discuss area-
level models that allow for uncertainty in the auxiliary information. Section 4 presents recent
work on estimation in multiple frame surveys that can be used in small area estimation, and
Section 5 discusses directions for future work.
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2. Unit-level Models for Use with Multiple Surveys

Lohr and Prasad (2003) developed a framework for combining information from multiple
surveys when information is available at the unit level. Let yij denote the characteristic
of interest for the jth unit in area i. Let xij = (xij1 · · ·xijk)

T denote a vector of other
characteristics for unit j of area i. For estimating assault rates, yij might be the number of
assaults that would be reported to the NCVS by person j in small area i over a specified
time period, and xij1 the number of assaults for that person that would be included in the
UCR for the same time period. For estimating income, yij might be the log of income of
household j in area i (measured in the CPS), and xij might be related quantities asked in
the ACS. In addition, there may exist various covariates aijl that come from administrative
records.

The above paragraph described applications in which y and x are measured from different
surveys. However, the methods also apply to the “sampling on two occasions” setting. Many
surveys such as the NCVS have a panel design in which the same households are sampled
during several administrations of the survey. In this setting, y may be taken as the value of
a characteristic on the second occasion and the auxiliary variable x is the same variable for
the first occasion.

In area i, both x and y are measured on the nxy
i units in Sixy; x (but not y) is measured on

the nx
i units in the set Six; y (but not x) is measured on the ny

i units in the set Siy. If unit
(ij) in the population is included in both surveys, m = k + 1 measurements are recorded.

We use a multivariate mixed model to describe the relationship between x, y, and covari-
ates. We assume that observations in different small areas are independent. To simplify
expression of results, we assume that the multivariate response vector ui is arranged with
all observations from Sixy first, followed by those from Six and Siy, so

uT
i = [xT

i1, yi1, . . . ,x
T
i,nxy

i
, yi,nxy

i
,xT

i,nxy
i +1, . . . ,x

T
i,nxy

i +nx
i
, yi,nxy

i +nx
i +1, . . . , yi,nxy

i +nx
i +ny

i
].

Let
ui = Aiµ + Zivi + ei (3)

where µ is a vector of fixed effects parameters, Ai and Zi are known matrices, and vi and
ei are independent random vectors with mean 0. Cov (vi) = Σv and

Cov (ei) = Ri = [Inxy
i

⊗
Σe]

⊕
[Inx

i

⊗
Σexx]

⊕
[Iny

i

⊗
Σeyy],

where the matrices Σv and Σe are partitioned as

Σv =

[
Σvxx Σvxy

ΣT
vxy Σvyy

]
, Σe =

[
Σexx Σexy

ΣT
exy Σeyy

]

and where
⊕

represents direct sum and
⊗

represents Kronecker product. Thus

Vi = Cov (ui) = Ri + ZiΣvZ
T
i (4)
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with

Zi =

 1nxy
i

⊗
Im

1nx
i

⊗
(Ik 0k)

1ny
i

⊗
(0T

k 1)


where 1j is a j-vector of ones.

For simplicity of presentation, we take µ to be the m-vector of fixed effects means, parti-
tioned as µT = [µT

x µy]. However, all results are easily extended to the case where µ is
a general vector of parameters, and Ai is a matrix of fixed effects covariates. In this way
information from a census or from administrative records may be incorporated into the small
area estimates through regression.

Under this setup, Lohr and Prasad (2003) showed that if µ and the covariance component
matrices are known, then the best linear unbiased predictor (BLUP) for µi = (µT

ix, θi)
T is

µ̃i = µ + nxy
i MiΣ

−1
e (ūixy − µ) + Min

∗
i (Σ

∗
e)
−1(ū∗i − µ). (5)

Here, ūixy is the average of the nxy
i vectors (xT

ij, yij)
T for j ∈ Sixy; ū∗i = (x̄T

ix, ȳiy)
T contains

the averages of the xij’s for j ∈ Six and of the yij’s for j ∈ Siy;

Σ∗
e =

[
Σexx 0

0 Σeyy

]
, (6)

n∗i =

[
nx

i I 0
0 ny

i

]
, (7)

and
Mi = (Σv

−1 + nxy
i Σ−1

e + n∗i (Σ
∗
e)
−1)−1. (8)

This estimator reduces to the multivariate estimator in Datta et al. (1999) if nx
i = ny

i = 0.

The BLUP θ̃i for θi is the mth component of µ̃i, and MSE(θ̃i) = Miyy, the (m,m) entry of
Mi. As a special case, the BLUP of θi when nxy

i = ny
i = 0 is θ̃i = µy + ΣT

vxyΣ
−1
vxx(µ̃ix − µx):

the estimator then borrows strength by using the between-area covariance of x and y.

If the quantities from the two surveys are correlated, θ̃i is more efficient than the corre-
sponding estimator that does not use the auxiliary survey data. Lohr and Prasad (2003)
derived the gain in efficiency, and showed that θ̃i has smaller MSE than the estimator from
the univariate unit-level model of Battese et al. (1988) if nx

i n
xy
i Σexy 6= 0 or nx

i Σvxy 6= 0.

2.1. Estimation of Unknown Quantities

The estimator in (5) was calculated assuming that the parameters µ, Σv, and Σe are known.
In practice, these must be estimated from the data.

Using the generalized least squares estimator µ̂ of µ, and using consistent estimators of the
covariance components, the multivariate estimator becomes

µ̂i = µ̂ + nxy
i M̂iΣ̂

−1
e (ūixy − µ̂) + M̂in

∗
i (Σ̂

∗
e)
−1(ū∗i − µ̂). (9)
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Lohr and Prasad (2003) derived the second order asymptotic properties of this estimator.
As with the BLUP, θ̂i is the mth component of µ̂i.

The method has been implemented in R and S-Plus, with restricted maximum likelihood used
to estimate the covariance components. A simulation study demonstrated that θ̂i was much
more efficient than an estimator that did not use the information from the auxiliary survey,
particularly when Σvxy was large relative to Σvxx and Σvyy. Even with relatively modest
sample sizes in the auxiliary survey (say, nx

i = 5), when the survey quantities were highly
correlated the MSE of θ̂i was about 1/5 of the MSE of the univariate unit-level estimator
that did not use the x information.

When using the multivariate estimator with separate surveys, in most cases it will not be
necessary to match sample observations between the two surveys. Even when the survey
designs share the same primary sampling units, it is unlikely that the same persons are
included in the surveys. Thus, it is overwhelmingly probable that in most small areas,
nxy

i = 0. Consequently, the estimator in (5) will involve Σv and Σ∗
e but not Σexy. The

vector Σexy is the only quantity, however, whose estimation requires that units in the two
surveys be matched. The matrix Σ∗

e can be estimated from the two separate surveys, and
Σv can be estimated provided that the number of small areas that contain observations from
both surveys is sufficiently large.

2.2. Robust Estimation of Covariance Components

The unit-level multivariate approach depends on a model, and the estimates are therefore
sensitive to departures from that model. The estimates of the fixed effects and of the covari-
ance components can perform badly in the presence of aberrant observations. In particular,
the restricted maximum likelihood estimates of the covariance components that were used
in (9) are affected by outliers. Outliers will not be too great of a problem for estimating Σe

because in most situations there will be sufficient degrees of freedom at the within-area level
to mitigate the effect of a few moderate outliers. There are fewer degrees of freedom for
estimating Σv, however, so if the estimated mean of a small area is aberrant, this outlying
area may greatly affect the REML estimate of Σv.

Dueck and Lohr (2003) developed a method for robust estimation of multivariate covariance
components. They used multivariate M-estimation of random effects to reduce the influence
of outliers—at both the within-area and between-area levels—on the estimated covariance
components. Preliminary research indicates that use of this method, together with robust
estimation of the fixed effects, improves the accuracy of small area estimates when some
data may be contaminated.

3. Area-level Models for Multiple Surveys

The models in Section 2 result in improved efficiency when unit-level auxiliary information
exists and observations can be matched across surveys. Matching is easy when sampling
on two occasions, where y is the response of interest measured at time 2 and the auxiliary
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information is the same response measured at time 1. In other settings, only areas may
need to be matched, since different units will be used in the two surveys. For some ap-
plications, however, matching units may be infeasible: records from the NCVS cannot in
general be matched with the same persons’ records from the UCR. In addition, there may
be concerns that using unit-level data across surveys or other data sources may compromise
confidentiality of the data (see Lohr, 2003). For some surveys, respondents may not have
given permission to have their data combined with individual-level information from other
sources. In such cases, area-level models are preferred.

In this section, we examine area-level models for use with two surveys. To simplify presen-
tation, we consider the case where θi is a population mean, although extensions to other
parameters are readily made. Let ȳi be an unbiased estimator of θi from the primary survey,
with sampling variance V (ȳi) = ψi. Administrative data for area i, Ai, is assumed to be
measured without error. We consider the k-vector Xi to be population characteristics for
area i which in some areas can be estimated by a vector xi from the auxiliary data source.
Often, Xi will be a vector of population means for area i. We assume here that when xi is
measured, E(xi) = Xi and V (xi) = Σi.

3.1. What if Error in Auxiliary Information is Ignored?

The Fay-Herriot (1979) model leads to the BLUP of θi. If ȳi and θi are assumed to be
normally distributed, the Fay-Herriot estimator can be motivated in an empirical Bayesian
framework (see Rao, 2003, chapter 9). It is assumed that ȳi | θi, ψi ∼ N(θi, ψi); a regression
model for the population quantity is given by

θi|Ai,Xi, σ
2
v ,α,β ∼ N(AT

i α + XT
i β, σ2

v). (10)

If the quantities (ȳi, θi) are independent for i = 1, . . . , t, then the posterior distribution of θi

is
θi|ȳi,Ai,Xi, σ

2
v ,α,β, ψi ∼ N [γ∗i ȳi + (1− γ∗i )(A

T
i α + XT

i β), ψiγ
∗
i ] (11)

where γ∗i = σ2
v/(σ

2
v + ψi). The mean of the posterior distribution of θi is

θ̃iEB = γ∗i ȳi + (1− γ∗i )(A
T
i α + XT

i β). (12)

Now let us examine what happens if an estimator X̂i with MSE(X̂i) = Ci is substituted for
the population quantity Xi in (12); either xi or another estimator may be used for X̂i. Let

θ̃∗i = γ∗i ȳi + (1− γ∗i )(A
T
i α + X̂T

i β). (13)

Then MSE(θ̃∗i ) = ψiγ
∗
i + (1− γ∗i )

2βTCiβ, and the posterior variance in (11) underestimates
the true variance. If the matrix Ci is large, the mean squared error of the θ̃∗i can be larger
than ψi, so that the supposedly improved small area estimator can perform worse than the
direct estimator that uses no auxiliary information. In addition, if the error in estimating
Xi is ignored and ψiγ

∗
i is naively reported to be the MSE, the estimator will be thought to

be more precise than it really is.
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We can correct the MSE by incorporating the error in estimating Xi into the model in
(10). If xi|(Xi,Σi) ∼ N(Xi,Σi), Xi|(µx,Σ) ∼ N(µx,Σ), and the quantities (xi,Xi) are
independent across areas, then the posterior distribution of θi has mean

γ∗i yi + (1− γ∗i )(A
T
i α + cT

i β)

and variance
ψiγ

∗
i + (1− γ∗i )

2βTDiβ,

where
ci = Σ(Σi + Σ)−1xi + Σi(Σi + Σ)−1µx

and
Di = Σ(Σi + Σ)−1Σi = Σi(Σi + Σ)−1Σ.

With the additional assumptions on the distribution of the auxiliary survey data, the poste-
rior variance is correct for the MSE. The relative weight γ∗i , however, still does not account
for the error in estimating Xi; it is possible for the posterior variance to be larger than ψi

so that incorporating the auxiliary x information may result in a decrease in precision. The
methods in the following sections use the uncertainty about xi when determining the relative
weightings of the direct and indirect estimators.

3.2. Multivariate Fay-Herriot Model

Fay (1987) and Datta et al. (1991) developed a Fay-Herriot-type model for a multivariate
response, and showed that it often results in more efficient estimators for a small area quantity
of interest than the univariate Fay-Herriot model. Datta et al. (1991) were interested in
estimating the median income of four-person households in state i. The direct estimate
was from the CPS. The auxiliary information, xi = (3/4) (median income of five-person
households) + (1/4) (median income of three-person households) also came from the CPS.
The multivariate model they used reduced the MSE of the estimator of θi through correlations
with the other variables. Lohr and Ybarra (2003) extended this model to allow for missing
observations, and to allow the observations to come from different sources. The following
summarizes the results for the notationally simpler case when xi and ȳi are independent.

Let Ui = [XT
i , θi]

T represent the population values for each of the i areas, i = 1, . . . , t. Define
Ti to be the matrix whose jth row is [0T , · · · ,0T ,AT

i ,0
T , · · · ,0T ] where the AT

i occurs as
the jth column. Consider the model

Ui = Tiα + vi (14)

where vi ∼ N(0,Σb) and α is a vector of regression coefficients. As in the unit-level model,
the covariance matrix Σb is partitioned as

Σb =

[
Σbxx Σbxy

ΣT
bxy Σbyy

]
.

Define the vector ui and the matrices Zi and Ψi for three cases:
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1. If x and y are both observed for area i then ui = [xT
i , ȳi]

T , Zi = Ik+1, and

Ψi =

[
Σi 0
0T ψi

]
.

2. If x is observed in area i but y is not observed then ui = xi, ZT
i = [Ik,0k] and Ψi = Σi

3. If y is observed in area i but x is not observed then ui = ȳi, ZT
i = [0T

k , 1], and Ψi = ψi.

Then the observations ui follow the model

ui = ZT
i Tiα + ZT

i vi + ei, (15)

where ei ∼ N(0,Ψi). The covariance matrix of ui is

Vi = Vi(ui) = ZT
i ΣbZi + Ψi.

The ui’s are assumed to be independent. This model then fits into the block diagonal
covariance structure model described in Section 6.3 of Rao (2003). Define

α̃ =

(∑
i

TT
i ZiV

−1
i ZT

i Ti

)−1 (∑
i

T−1
i ZiV

−1
i ui

)
,

Ki = (Σbxx + Σi)
−1,

and

κi =
Σbyy −ΣT

bxyKiΣbxy

Σbyy −ΣT
bxyKiΣbxy + ψi

,

The BLUP for (XT
i , θi) is then

θ̃iMFH = κiȳi + (1− κi)
[
[0T , 1]Tiα̃ + ΣT

bxyKi (xi − [I,0]Tiα̃)
]

(16)

if both xi and ȳi are observed in area i;

θ̃iMFH = [0T , 1]Tiα̃ + ΣT
bxyKi(xi − [I,0]Tiα̃) (17)

if xi is observed in area i but ȳi is not;

θ̃iMFH = κiȳi + (1− κi)[0
T , 1]Tiα̃ (18)

if ȳi is observed but xi is not.

The weighting κi in the small area estimator in (16) to (18) depends on the variability of xi as
well as on the sampling variability of ȳi: κi is smaller, and the small area estimator depends
more heavily on the direct estimator, if the variability of xi is larger. If Xi is measured
exactly (i.e., all entries of Σi are 0), then θ̃iMFH , using assumptions of normality, coincides
with the univariate Fay-Herriot estimator that incorporates the Xi’s as covariates.

The MSE of the estimator in (16) to (18) can be obtained using standard methods and
is given in Lohr and Ybarra (2003). As occurred with the unit-level model, use of the
multivariate Fay-Herriot model results in improved efficiency.

In practice, Σb as well as α must be estimated from the data. Method of moments, maximum
likelihood, or restricted maximum likelihood may be used. See Datta et al. (2001) for a
comparison of the estimators of Σb in the univariate case.
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3.3. Measurement Error Model

As shown in Section 3.1, ignoring the error in xi gives a biased mean squared error and
a non-optimal weighting of the direct and indirect estimators. The motivation for using a
measurement error model comes from the observation that omitted or inaccurate covariates
can cause bias. Suppose that the model in (10) holds, but it is fitted omitting the term XT

i β.
Then estimates of the regression parameters α and the predicted values may be biased. This
bias leads to an increase in the MSE of the predicted values. If xi or another estimator X̂i is
included in the covariates, however, the error in measuring Xi must be accounted for in the
estimation and mean squared error. Fuller (1987, 1990), Carroll et al. (1995) and Cheng and
Van Ness (1999) discussed measurement error models for estimation of regression parameters
and for prediction.

As before, let X̂i be an estimator of the population quantity Xi with MSE (X̂i) = Ci. We
assume that such an estimator exists for every area: If x is not measured in area i, then an
empirical Bayes estimator or imputed value may be used for X̂i. Consider the model

ȳi = AT
i α + X̂T

i β + ri(X̂i,Xi) + ei (19)

where
ri(X̂i,Xi) = vi + (Xi − X̂i)

T β.

Here, vi ∼ N(0, σ2
v) represents the model error and ei ∼ N(0, ψi) represents the design-based

survey error for ȳi. We assume that vi is independent of both X̂i and ȳi. For simplicity, we
also assume here that all X̂i’s and ȳi’s are independent; Ybarra (2003) develops theory for
the more general case. Consequently, MSE(ri) = σ2

v + βTCiβ. Now let

θ̃iME = γiȳi + (1− γi)(A
T
i α + X̂T

i β), (20)

where

γi =
σ2

v + βTCiβ

σ2
v + βTCiβ + ψi

. (21)

Then θ̃iME has minimum mean squared error among all linear combinations of ȳi and AT
i α+

X̂T
i β of the form aiȳi + (1− ai)(A

T
i α + X̂T

i β) where 0 ≤ ai ≤ 1. The estimator in (21) may
also be derived as the “best” estimator in the Rao-Blackwell sense if normality is assumed.

The relative weights γi depend on the error in estimating Xi: γi is smaller when X̂i is
measured without error. If X̂i is measured imprecisely, then γi is larger and the estimator
depends more heavily on the direct estimator ȳi. If ȳi is measured in area i then MSE(θ̃iME) =
ψiγi, which is at most as large as the variance ψi of the direct estimator, ȳi. If ȳi is not
measured in area i then MSE (θ̃iME) = σ2

v + βTCiβ.

Note that MSE (θ̃iME) ≤ MSE (θ̃∗i ) where θ̃∗i is the substitution estimator from (13): the two
MSE’s are equal if Ci = 0. If the empirical Bayes estimator is used for X̂i, then it can be
shown that the estimator in (20) is equivalent to the multivariate Fay-Herriot estimator.

In practice, the quantities σ2
v , α and β are unknown and must be estimated from the data.

Lindley (1947, p. 243) suggested using weighted least squares to estimate the regression
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parameters. For our model, the MSE of the errors (ri + ei) is ψi + σ2
v + βTCiβ. Thus, one

can solve for the unknown parameters by minimizing

Q(α,β) =
m∑

i=1

(ȳi −AT
i α− X̂T

i β)2

ψi + σ2
v + βTCiβ

where the sum is over areas i where ȳi is measured. Gleser (1981) gave large sample properties
of the resulting estimates of the regression parameters. If σ2

v is unknown, we can use modified
least squares to estimate the parameters (Cheng and Van Ness, 1999, pp. 85 and 146). In
this case an unbiased estimator of σ2

v is

Q1(α,β, ψ1, . . . , ψm) = m−1
m∑

i=1

[(ȳi −AT
i α− X̂T

i β)2 − ψi − βTCiβ] (22)

Minimizing Q2 with respect to α and β gives estimates of the regression parameters. Note,
though, that terms in (22) may be negative and it is possible that minimization will occur on
the boundaries of the parameter space. Ybarra (2003) modified the estimators so that the
expected values of the regression parameters are finite and derived properties of the models
using these estimators. She also explored effects of estimating the variances from the data.

Although in some situations the measurement error model and multivariate Fay-Herriot
method give similar results, we prefer the measurement error model for many practical
situations. It is more flexible for choice of estimator of Xi. In addition, robust methods may
be used for estimating the regression parameters and variance terms, so that the measurement
error model is adaptable for situations in which some of the xi’s are outliers due to variable
quality of the data sources.

3.4. Applications

The measurement error model has an advantage over the multivariate Fay-Herriot approach
in that means and variances of the auxiliary information can be estimated separately from
the quantities from the primary survey. Missing values may be imputed, and imputation
variance used for the MSE of X̂i. This approach would work better than the multivariate
Fay-Herriot approach for estimating victimization rates at the state level, using the Uniform
Crime Reports (UCR) data as auxiliary information.

The UCR data sets give crimes reported each month by each of the approximately 19,000
law enforcement agencies in the United States. In a typical year, however, approximately
1/3 of the total possible month/agency cells are missing. If complete records only are used
as auxiliary information in a Fay-Herriot-type model, the resulting small area estimates may
be biased and will have standard errors that are too small because they do not account for
the uncertainty in the auxiliary information. The multivariate Fay-Herriot approach can
reduce some of this bias by incorporating administrative covariates to improve prediction
of the UCR (essentially, including the imputation in the model). But the imputation will
be done at the state level for annual data; this will not be as good as an imputation done
separately using partial agency information and longitudinal trends with the monthly data.
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Schalk (2003) studied imputation methods for the western region of the Uniform Crime
Reports data. She evaluated the currently used hot deck method, nearest neighbor, and
several regression models for imputing missing cells and found that the hot deck method is the
least accurate. All of the models studied can give standard errors for the statewide quantities
by using bootstrap or multiple imputation. Thus, by doing the imputation separately, the
auxiliary information is more accurate and is accompanied by an estimate of precision Ci

that can be used with the measurement error model for estimating victimization rates with
NCVS data. With the imputed values from the UCR, we are now in a position to apply
the measurement error models in Section 3.3 to obtain more accurate estimates of local
victimization rates.

We are also currently using the models discussed in this section to obtain small area estimates
of the prevalence of diabetes for 50 demographic subgroups based on race/ethnicity, gender,
and age. In NHANES, diabetes prevalence is estimated using medical exams of plasma
glucose levels, while in NHIS diabetes-related problems are assessed using the results of
questionnaires. Correlation between the items in the two surveys is about 0.4; using the NHIS
data as auxiliary information reduces the MSE for diabetes prevalence in small demographic
groups (with NHANES sample sizes between 5 and 7) by 40-80%.

4. Multiple Frame Surveys for Small Area Estimation

Up to this point, we have discussed using a second survey to provide auxiliary information
for estimating a quantity of interest measured in the primary survey. The models given in
Sections 2 and 3 use all available information for predicting θi; if area i has no observations
from either the primary or secondary survey, then θ̂i relies on the predicted value from the
regression using the administrative data. This may be the best that can be done with the
available information, but sometimes a different design can give more precision for the direct
estimators and for the estimated regression parameters.

One such design that can be used is a multiple frame survey. In a multiple frame survey,
probability samples are drawn independently from Q frames A1, . . . , AQ. The union of the
Q frames is assumed to cover the finite population of interest, U . The frames may overlap,
resulting in a possible 2Q − 1 nonoverlapping domains.

Rao (2003, chapter 2) discussed the use of multiple frame designs for improving small area
estimation. The primary purpose of many surveys is estimation of quantities such as un-
employment or criminal victimization at the national level; the designs for the surveys thus
are directed toward the national estimates, even though some surveys contain design fea-
tures useful for small area estimation. These surveys, though, can be supplemented with
additional samples from small areas of interest, so that the original survey and additional
samples can be considered as a multiple frame survey. Madans et al. (2001) discussed using
multiple frame surveys for supplementing information from NHIS; additional surveys may
be taken from different states and combined with NHIS data for improved estimation at the
state level. In this situation the same questions may be used in NHIS and the supplementary
surveys.
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Various estimators that have been proposed for combining information from the separate
samples were reviewed in Lohr and Rao (2000). These estimators modify the weights associ-
ated with sampled units from each frame, so that the overall population total is estimated by
a weighted sum of the observations from all of the samples using the modified weights. Many
of these methods, however, were developed for estimating one population total or mean at
a time, and use a different set of modified weights for each characteristic of interest. Such
an approach will give nearly optimal results for individual responses, but will not work well
for estimating small area totals or means directly from the surveys: If different weights are
used for estimating the population total in different small areas, the sum of estimated small
area population totals will not equal the estimated total for larger areas. It is thus desirable
to have methods for obtaining direct small area estimates from multiple frame surveys that
use the same set of weights for all variables. Skinner and Rao (1996) developed a pseudo-
maximum likelihood method that uses the same weights for all variables for the two-frame
situation.

Lohr and Rao (2002) developed estimation methods for multiple frame surveys with more
than two frames that use the same weights for each variable being estimated, and thus can
be applied when supplemental surveys are taken in several small areas. These methods easily
apply to the small area setting by letting the variable of interest be the value θi for the ith

small area. The improved direct estimators of the θi’s may then be used with an area-level
model to achieve greater efficiency.

5. Discussion and Future Work

In this paper, we have summarized recent research we have done on combining information
from different sources for small area estimation. In many situations, much greater efficiency
can be achieved by using auxiliary information from another survey. We believe that these
methods have the potential to increase the accuracy of small area estimates with no or
minimal increase in the cost of data collection, as they are all based on more efficient use of
existing data.

The American Community Survey is intended, through its large sample size, to provide
improved direct small area estimates for income and poverty. Those characteristics and
other quantities measured in the ACS can also provide valuable and timely auxiliary data
for small area estimation of quantities measured in other surveys. The methods summarized
in this paper can be used to take advantage of this new, detailed data source for small area
estimation of many different characteristics of interest.

Since the ACS uses rolling samples, longitudinal methods will also be helpful when using the
ACS as auxiliary information. We are currently working on incorporating time series models
into the estimation, and on obtaining longitudinal estimates from multiple frame surveys. A
related problem is using spatial models to better include geographic information.

Another important problem under study is robustness to the model and to methods for esti-
mating model quantities. One challenge of using UCR data as auxiliary information for the
NCVS, in addition to the missing values, is that some agencies provide inaccurate estima-
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tion. These inaccuracies could then bias the results. Using robust methods is expected to
reduce the effects of possible UCR outliers and result in more accurate small area estimates.
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General Discussion: Benefits and Challenges  
of the Funding Opportunity 

 
Brian A. Harris-Kojetin 

U.S. Office of Management and Budget 
 

 
I find myself in the unenviable position of attempting to add something to what has already been 
expressed here today and trying to follow Fritz, who is always a tough act to follow.  Fortunately, 
my task is not to contribute substantively to the technical discussion, but rather to discuss the 
benefits and challenges of the Funding Opportunity in Survey Research.  Certainly some of the 
benefits of this program have become quite obvious to everyone here today.   

 
I will briefly address what I see as some of the major benefits of the Funding Opportunity, and then 
talk about some challenges and opportunities we have in the Federal statistical system that future 
proposals may help us address.   

 
Benefits 
 
One of the most immediate benefits is the dialogue that we have had here today and the interactions 
we will continue to have.  Certainly one of the goals of this enterprise is to foster greater interaction 
of the Federal statistical and academic communities about topics of mutual interest and concern.  We 
Feds can benefit and learn about innovations in other sectors, while they learn more about the 
applied problems we are faced with.  Our hope is to push their interest and thinking into areas and 
applications related to work they are already pursuing, or perhaps even to spark an interest in a new 
area of research that would be of real benefit to us.   

 
In the process we hope to foster more long-term benefits and lasting relationships that may lead not 
only to the potential for agencies funding further work but also to new ideas for additional projects 
and fostering student knowledge of issues and opportunities in the Federal statistical system.  There 
are many interesting problems and challenges we face in Federal statistics, and we need to attract the 
future talent to deal with these.  In some sense, this program becomes one way for us to advertise 
ourselves and our issues to the next generation through their faculty mentors.  NSF considers student 
support in its decisions and many Federal agencies strongly support this as well.   

 
Looking at the structure of the program itself, the Funding Opportunity provides a valuable 
mechanism for multiple agencies that don’t have access to a grants process and may not have broad 
contact with academics and others working on similar issues.  Although statistical agencies 
frequently contract out data collection and perhaps some related methodological and statistical 
research, most agencies do not on their own have the ability to fund investigator-initiated grants, and 
could not, on their own muster the resources necessary to fund, manage, and maintain such a 
program.   

 
The Funding Opportunity is an excellent example of cooperation among statistical agencies for the 
greater good of the whole Federal Statistical System.  Since coming to OMB, I have seen that 
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coordinating and effectively communicating across more than 70 agencies that do some kinds of 
statistical work is an enormous task.  Statistical agencies have frequently been at the forefront of 
innovation and coordination across government, and the Funding Opportunity is an excellent 
example of effective use of government resources.   
 
Much of the credit for this success goes to the efforts of Monroe Sirken and Nancy Kirkendall and 
the collaboration they established between the ICSP and the Federal Committee on Statistical 
Methodology (FCSM).  The FCSM, which consists of about two dozen senior statisticians, 
methodologists, economists, and managers, is an excellent platform for promoting this research 
program.  The FCSM is perhaps best known for our Working Paper series, which are available on 
our web site: http:\\www.fcsm.gov and biennial conferences on statistical policy (last November) 
and the upcoming Research Conference this November.  In addition to these forums, the committee 
is currently engaging in new efforts to reach out and facilitate communication and sharing of 
expertise across agencies, and to leverage the experience across agencies to provide technical 
assistance to the Federal statistical system as a whole, and smaller agencies in particular.  We are 
also striving to involve more agencies in the Funding Opportunity to be able to expand the scope and 
number of projects that we can fund as well as improve communication and collaboration within the 
statistical system.   

 
This morning Monroe described the history of the Funding Opportunity, and I would like to take a 
few minutes to talk about its future.  The Interagency Council on Statistical Policy (ICSP) has 
embraced the recommendations of the FCSM research subcommittee to continue funding this 
program for the next three years.  The funding formula was altered slightly to a tiered structure to 
enable more agencies to contribute in line with their means, but we will achieve approximately the 
same overall total as before, with some agencies contributing a little more and some a little less.  I 
want to point out that this sets a minimum base of funding.  In the past, some agencies have 
contributed additional money to specific projects that were of direct interest and benefit to them and 
several have expressed similar sentiments this year.   

 
Unfortunately, for 2003, our description of the Funding Opportunity was not included in time to 
make NSF’s main announcement.  Consequently, this fiscal year we saw fewer relevant projects, but 
still enough of high quality and interest that we anticipate funding.  I think it is a real credit to the 
agency heads and an indication of their commitment that they voted to contribute to this year’s 
program even though we did not have the announcement and did not receive as many proposals as 
previous cycles.  It would have easy for them to opt out this year and perhaps harder to get started 
back again next year.  We strongly encourage you to reach out to colleagues to apply next year and 
future funding cycles to keep this program alive and vital.  The long-term future of this program will 
be driven by the quality of the projects we are able to fund and the contributions they make to the 
Federal statistical system.   
 
Challenges and Opportunities 
 
Although I’m very optimistic about the future of this program, I think it’s important to balance this 
with some appropriate cautions.  It’s not likely that agencies will be feeling that they have much 
extra room in their budgets in the next few years, so the kinds of projects that are funded and their 
results will likely impact the long-term future of this endeavor.  One strength of the program is that it 
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draws funds from many agencies; however, there are also potential drawbacks when there are 
diverse stakeholders with different interests and needs.  If we fund only projects that appeal to the 
majority of agencies, there may be some that will be consistently left out, and over time will not see 
the payoff for their continued participation in the program.  We need to carefully consider the 
breadth of the proposals we fund, but clearly we need proposals that cover the diversity of issues 
facing the many agencies in the Federal statistical system.   
 
To do this, it’s not sufficient just to post announcement on the NSF website—although we have 
clearly seen this is helpful through an unintended natural experiment.  But we also need to reach out 
to colleagues at forums such as ASA, AAPOR, ISI, AAAS, and other venues to encourage them to 
apply their expertise to Federal problems or try to help us with issues we are facing.  I think we have 
the opportunity to make this program thrive and involve a growing number of Federal statistical 
agencies.  The challenge will be to attract a diversity of quality projects that will meet a wide variety 
of needs across these agencies.   
 
Promising Areas 
 
I can’t resist this opportunity to put in a pitch for proposals to deal with what I see as some of the 
pressing problems we face in the Federal statistical system.  This is certainly not a representative 
sample, nor are any of these really surprising.     
 
You didn’t need to attend the AAPOR meeting a few weeks ago, to know that there are real concerns 
about the future of telephone survey methodology, and RDD surveys in particular.  However, if you 
attended the conference, you certainly couldn’t have missed the focus on response rates, much of it 
focused on RDD surveys.  Although RDD surveys are not the mainstay of Federal government 
survey data collections in most statistical agencies, there are a number of Federal RDD surveys 
across a variety of departments that provide critically important information that is tied to policy 
making and, in some cases, even quite directly to the distribution of government funds.  In addition 
to concerns about response rates, issues of coverage and the growing impact of cell phones 
constitute an evolving landscape we need to understand and deal with.  We have funded one project 
in this area, you will hear about at the next seminar, but more work is needed in this area.   

 
There are also growing uses of electronic data collection, spurred on by the Government Paperwork 
Elimination Act (GPEA).  More and more frequently this means using the internet for data 
collection, rather than just CATI or CAPI.  There are certainly many promises in using the web for 
data collection, but there are also perils.  Some government web surveys have certainly been 
featured in presentations and classes that Roger and his colleagues use to illustrate “what not to do.” 
 In addition to the nuts and bolts of doing better web surveys, there are certainly some situations 
where these kinds of applications are appropriate and others where they are not, at least not as the 
only mode.  A broader framework backed by empirical results to enhance understanding and guide 
decision-making on how and when to use web-based collections and how to deal with issues of 
response rates, coverage, and respondent preferences would be very useful to agencies.  As Cleo 
noted in her remarks, web and paper do often need to work together.   

 
Another area I think many statistical agencies would like to see more attention given to is 
establishment surveys, which I will define quite broadly to include not only private businesses, but 
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also institutions such as hospitals and schools.  Compared to demographic or household-based 
surveys, establishment surveys tend to receive less attention outside government, yet there are many 
of the general issues are the same with specific variations for this context.  For example, we see 
increasing efforts being required to do effective recruiting and handle nonresponse.  Part of the 
problem is that it is often requiring more and more levels of approval to obtain cooperation.  In local 
areas, we are seeing school districts requiring approval before allowing us to contact schools.  
Presentations to school boards and even local IRBs are becoming more common.  Increased testing 
required by the No Child Left Behind legislation is, of course, putting more burdens on schools, and 
our research studies may suffer for it.  Likewise, businesses have long complained of the burdens of 
multiple collections from different agencies.  It strikes me, perhaps naively, that a principal 
investigator funded under this program could learn a great deal about the burdens being placed on 
organizations, and could perhaps provide some valuable insights that will aid us when agencies are 
allowed to share data, such as sample frames, and even in cases where they are not.   

 
Finally, confidentiality concerns don’t appear to be diminishing anytime soon.  In addition to the 
good technical work on disclosure limitation that has been funded, we could also use more work on 
respondent perceptions of confidentiality: both from the household and establishment perspectives.  
In particular, it would be helpful to understand respondent’s perceptions of use of data by outside 
researchers.  How much do we tell respondent’s about this possibility and how do we tell them to 
make it clear the protections we have built in?  We now have new legislation, the Confidential 
Information Protection and Statistical Efficiency Act of 2002 (CIPSEA) that allows us to provide a 
consistently high level of protection to statistical data gathered under a pledge of confidentiality.  
We need to be able to effectively communicate this to our respondents and make them feel more 
assured rather than more concerned as some previous research has shown.   

 
To conclude, I think the need for the Funding Opportunity is greater than ever, and I appreciate your 
active participation.  I would like to thank not only the authors and discussants for their excellent 
work and thoughtful remarks, but also those sponsors who made this possible, and all of you for 
attending and carrying this back to your agencies, and out to your colleagues.  I look forward to the 
next round of proposals and our next seminar.   
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